537 research outputs found
Geophysical investigation along parts of the Dent and Augill Faults
The areas covered in the present investigation lie near the towns of
Brough and Kirkby Stephen. They include parts of the Dent and Augill
Faults, which form the western margins of the Askrigg and Alston Blocks
respectively.
I
The higher ground is open moorland used for sheep-grazing and is difficult
of access except to cross-country vehicles, but the lower ground is in
I
agriculturai use , generally as pasture, and is well served by roads and tracks.
I
The airborne electromagnetic (AEM) survey was restricted to the areas
of known mineral veins (Fig. 1) along the Dent and Augill faults. NO
geochemical exploration was undertaken because of widespread contamination
from the numerous mine dumps.
GEOLOGY
The northern part of the area shown in Fig. 1 was re-surveyed between
1958 and 1967 (Burgess and Holliday, in press) following the 19th-century
primary survey. The southern part has not been completely re-surveyed,
although parts of it were revised for the 1 inch to 1 mile scale geological
map (Kirkby Stephen sheet 40) published in 1972 and detailed mapping of
selected areas has formed part of the present investigations.
The area is mainly underlain by Carboniferous rocks (Fig. 2) and details
of the successions are given in Figs. 2, 5 and 6. Permo-Triassic deposits are
present to the west, j ust beyond the areas of detailed work (Fig. 2).
The oldest Carboniferous rocks exposed are the Orton Group, comprising
marine limestones with sandstones and shales. The lower part of the overlying
Alston Group consists of the massively bedded Great Scar Limestone, about 100 m
thick. The succeeding beds comprise alternating limestones, mudstones,
siltstones and sandstones deposited in a sequence of cyclothems. These are
internally very variable and any one cyclothem is rarely fully developed
Characteristics of a series of high speed hard chine planing hulls - part II: performance in waves
An experimental investigation into the performance of high speed hard chine planing hulls in irregular waves has been conducted. A new series of models representative of current design practice was developed and tested experimentally. Measurements of the rigid body motions and accelerations were made at three speeds in order to assess the influence of fundamental design parameters on the seakeeping performance of the hulls and human factors performance of the crew, with an aim to provide designers with useful data. Response data, such as heave and pitch motions and accelerations, are presented as probability distributions due to the non-linear nature of high speed craft motions. Additionally statistical parameters for the experimental configurations tested are provided and the most relevant measures for crew performance discussed. Furthermore, an example of the use of these statistical parameters to evaluate the vibration dose value of the crew onboard a full scale high speed planingcraft is given. It is confirmed that at high speed craft motion leads to recommended maximum values of vibration dose value being exceeded after only short durations. In practice, therefore, mitigating strategies need to be developed and/or employed to reduce crew exposure to excessive whole body vibratio
Race-time prediction for the Vaâa paralympic sprint canoe
The 2016 Paralympic Games in Rio de Janeiro will see 200m sprint canoe events for the first time, using the Vaâa class. The aim of this study is to predict race times for the Vaâa over a 200m sprint event, through simulation of the hydrodynamic resistance of the hull (with outrigger) and the propulsion provided by the athlete. Such a simulation, once suitably validated, allows investigation of design and configuration changes on predicted race performance. The accuracy of the simulation is discussed through a comparison to times recorded for an athlete over a 200m race distanc
The effect of swimsuit resistance on freestyle swimming race time.
It is known that swimming equipment (suit, cap and goggles) can affect the total resistance of a swimmer, and therefore impact the resulting swimming speed and race time. After the 2009 swimming world championships (WC) the international swimming federation (FINA) banned a specific type of full body suit, which resulted in an increase in race times for subsequent WC events. This study proposes that the 2009 suits provided a reduction in swimming resistance and aims to quantify this resistance reduction for male and female freestyle events. Due to the practical difficulties of testing a large sample of swimmers a simulation approach is adopted. To quantify the race time improvement that the 2009 suits provided, an equivalent 2009 âno-suitâ dataset is created, incorporating the general trend of improving swimming performance over time, and compared to the actual 2009 times. A full race simulation is developed where the start, turn, underwater and surface swimming phases are captured. Independent resistance models are used for surface and underwater swimming; coupled with a leg propulsion model for underwater undulatory swimming and freestyle flutter kick, and a single element arm model to simulate freestyle arm propulsion. A validation is performed to ensure the simulation captures the change in swimming speed with changes to resistance and is found to be within 5% of reality. Race times for an equivalent âno-suitâ 2009 situation are simulated and the total resistance reduced to achieve the actual 2009 race times. An average resistance reduction of 4.8% provided by the 2009 suits is identified. A factor of 0.47 ± 10%, to convert resistance changes to freestyle race time changes is determine
Microscopic dynamics underlying the anomalous diffusion
The time dependent Tsallis statistical distribution describing anomalous
diffusion is usually obtained in the literature as the solution of a non-linear
Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A, 222, 347
(1995)]. The scope of the present paper is twofold. Firstly we show that this
distribution can be obtained also as solution of the non-linear porous media
equation. Secondly we prove that the time dependent Tsallis distribution can be
obtained also as solution of a linear FP equation [G. Kaniadakis and P.
Quarati, Physica A, 237, 229 (1997)] with coefficients depending on the
velocity, that describes a generalized Brownian motion. This linear FP equation
is shown to arise from a microscopic dynamics governed by a standard Langevin
equation in presence of multiplicative noise.Comment: 4 pag. - no figures. To appear on Phys. Rev. E 62, September 200
Knock-on community impacts of a novel vector: spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees.
This is the final version. Available from the publisher via the DOI in this record.The Sanger sequences that support the findings of this study have been deposited in GenBank with virus accession codes MG264907âMG265503 and Nosema accession codes MK942707âMK942712; SMRT reads have been archived in NCBI's Sequence Read Archive with BioProject accession number PRJNA542789. Prevalence and qPCR data that support the findings will be available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.70jt240.Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock-on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re-emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV-B overtaking DWV-A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock-on effects
Large-scale collective motion of RFGC galaxies in curved space-time
We consider large-scale collective motion of flat edge-on spiral galaxies
from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature
of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the
relativistic model of collective motion should be modified to provide the best
possible values of parameters, the effects that impact these parameters and
ways to mitigate them. Evolution of galactic diameters, selection effects, and
difference between isophotal and angular diameter distances are inadequate to
explain this impact. At the same time, measurement error in HI line widths and
angular diameters can easily provide such an impact. This is illustrated in a
toy model, which allows analytical consideration, and then in the full model
using Monte Carlo simulations. The resulting velocity field is very close to
that provided by the non-relativistic model of motion. The obtained bulk flow
velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table
Large-scale collective motion of RFGC galaxies
We processed the data about radial velocities and HI linewidths for 1678 flat
edge-on spirals from the Revised Flat Galaxy Catalogue. We obtained the
parameters of the multipole components of large-scale velocity field of
collective non-Hubble galaxy motion as well as the parameters of the
generalized Tully-Fisher relationship in the "HI line width - linear diameter"
version. All the calculations were performed independently in the framework of
three models, where the multipole decomposition of the galaxy velocity field
was limited to a dipole, quadrupole and octopole terms respectively. We showed
that both the quadrupole and the octopole components are statistically
significant.
On the basis of the compiled list of peculiar velocities of 1623 galaxies we
obtained the estimations of cosmological parameters Omega_m and sigma_8. This
estimation is obtained in both graphical form and as a constraint of the value
S_8=sigma_8(Omega_m/0.3)^0.35 = 0.91 +/- 0.05.Comment: Accepted for publication in Astrophysics and Space Scienc
High-Energy Aspects of Solar Flares: Overview of the Volume
In this introductory chapter, we provide a brief summary of the successes and
remaining challenges in understanding the solar flare phenomenon and its
attendant implications for particle acceleration mechanisms in astrophysical
plasmas. We also provide a brief overview of the contents of the other chapters
in this volume, with particular reference to the well-observed flare of 2002
July 23Comment: This is the introductory article for a monograph on the physics of
solar flares, inspired by RHESSI observations. The individual articles are to
appear in Space Science Reviews (2011
- âŠ