13,017 research outputs found
Role of cerium in lithium niobate for holographic recording
Cerium-doped lithium niobate crystals are tested for holographic recording. A photochromic effect is observed in crystals doped with cerium and manganese. But two-center recording in the sample is not as effective as in iron and manganese doubly doped crystals. Photocurrent measurements in cerium and iron singly doped crystals indicate that the photovoltaic constant in the cerium-doped crystal is only one third of that of the iron-doped one. This is the main reason accounting for the low sensitivity of cerium-doped lithium niobate crystals. However, in the diffusion dominated case, i.e., for reflection geometry, cerium-doped lithium niobate may give a strong effect
Probing the electron EDM with cold molecules
We present progress towards a new measurement of the electron electric dipole
moment using a cold supersonic beam of YbF molecules. Data are currently being
taken with a sensitivity of . We
therefore expect to make an improvement over the Tl experiment of Commins'
group, which currently gives the most precise result. We discuss the systematic
and statistical errors and comment on the future prospect of making a
measurement at the level of .Comment: 8 pages, 6 figures, proceedings of ICAP 200
Stochastic geometry and topology of non-Gaussian fields
Gaussian random fields pervade all areas of science. However, it is often the
departures from Gaussianity that carry the crucial signature of the nonlinear
mechanisms at the heart of diverse phenomena, ranging from structure formation
in condensed matter and cosmology to biomedical imaging. The standard test of
non-Gaussianity is to measure higher order correlation functions. In the
present work, we take a different route. We show how geometric and topological
properties of Gaussian fields, such as the statistics of extrema, are modified
by the presence of a non-Gaussian perturbation. The resulting discrepancies
give an independent way to detect and quantify non-Gaussianities. In our
treatment, we consider both local and nonlocal mechanisms that generate
non-Gaussian fields, both statically and dynamically through nonlinear
diffusion.Comment: 8 pages, 4 figure
Acute Caffeine Supplementation in Regular Caffeine Consumers Minimally Affects Strength in Knee Flexors
Please refer to the pdf version of the abstract located adjacent to the title
Four Days of Caffeine Withdrawal in Caffeine Consumers Lowers Strength in Knee Flexors and Extensors
Please refer to the pdf version of the abstract located adjacent to the title
Sometimes hard to swallow: Attempted feeding on a porcupinefish results in death of both predator and prey
Predator-prey relationships are critical components of population dynamics across all ecosystems. Interactions between predators and dangerous prey are especially likely to result in a co-evolutionary arms race. To avoid predation, porcupinefishes (Diodontidae) present a suite of physical and chemical defences, including spines, inflation, and the potent neurotoxin, tetrodotoxin, which is concentrated in the internal organs. A failed predation attempt is described here on a longspined porcupinefish, Diodon holocanthus, by a benthopelagic predator, Carangoides fulvoguttatus, resulting in the death of both the predator and the prey.
Strain Modulated Superlattices in Graphene
Strain engineering of graphene takes advantage of one of the most dramatic
responses of Dirac electrons enabling their manipulation via strain-induced
pseudo-magnetic fields. Numerous theoretically proposed devices, such as
resonant cavities and valley filters, as well as novel phenomena, such as snake
states, could potentially be enabled via this effect. These proposals, however,
require strong, spatially oscillating magnetic fields while to date only the
generation and effects of pseudo-gauge fields which vary at a length scale much
larger than the magnetic length have been reported. Here we create a periodic
pseudo-gauge field profile using periodic strain that varies at the length
scale comparable to the magnetic length and study its effects on Dirac
electrons. A periodic strain profile is achieved by pulling on graphene with
extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap
pulled taut at its edges. Combining scanning tunneling microscopy and atomistic
calculations, we find that spatially oscillating strain results in a new
quantization different from the familiar Landau quantization observed in
previous studies. We also find that graphene ripples are characterized by large
variations in carbon-carbon bond length, directly impacting the electronic
coupling between atoms, which within a single ripple can be as different as in
two different materials. The result is a single graphene sheet that effectively
acts as an electronic superlattice. Our results thus also establish a novel
approach to synthesize an effective 2D lateral heterostructure - by periodic
modulation of lattice strain.Comment: 18 pages, 5 figures and supplementary informatio
The Quantum State of an Ideal Propagating Laser Field
We give a quantum information-theoretic description of an ideal propagating
CW laser field and reinterpret typical quantum-optical experiments in light of
this. In particular we show that contrary to recent claims [T. Rudolph and B.
C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)], a conventional laser can be
used for quantum teleportation with continuous variables and for generating
continuous-variable entanglement. Optical coherence is not required, but phase
coherence is. We also show that coherent states play a priveleged role in the
description of laser light.Comment: 4 pages RevTeX, to appear in PRL. For an extended version see
quant-ph/011115
- …