214 research outputs found

    The sexual identity of adult intestinal stem cells controls organ size and plasticity

    No full text
    Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realization that cell-intrinsic mechanisms play important and persistent roles. Here we use the Drosophila melanogaster intestine to investigate the nature and importance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncovers the key role this identity has in controlling organ size, reproductive plasticity and response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms that control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognized

    Selection of an Efficient AAV Vector for Robust CNS Transgene Expression

    Get PDF
    Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent and sustained in two mouse strains (C57BL/6 and BALB/c), making it a highly useful capsid for CNS transduction of mice. Future work in large animal models will test the translation potential of AAV-F

    Failure to learn from feedback underlies word learning difficulties in toddlers at risk for autism

    Get PDF
    Children’s assignment of novel words to nameless objects, over objects whose names they know (mutual exclusivity; ME) has been described as a driving force for vocabulary acquisition. Despite their ability to use ME to fast-map words (Preissler & Carey, 2005), children with autism show impaired language acquisition. We aimed to address this puzzle by building on studies showing that correct referent selection using ME does not lead to word learning unless ostensive feedback is provided on the child’s object choice (Horst & Samuelson, 2008). We found that although toddlers aged 2;0 at risk for autism can use ME to choose the correct referent of a word, they do not benefit from feedback for long-term retention of the word–object mapping. Further, their difficulty using feedback is associated with their smaller receptive vocabularies. We propose that difficulties learning from social feedback, not lexical principles, limits vocabulary building during development in children at risk for autism

    The reversing number of a diagraph

    Get PDF
    AbstractA minimum reversing set of a diagraph is a smallest sized set of arcs which when reversed makes the diagraph acyclic. We investigate a related issue: Given an acyclic diagraph D, what is the size of a smallest tournament T which has the arc set of D as a minimun reversing set? We show that such a T always exists and define the reversing number of an acyclic diagraph to be the number of vertices in T minus the number of vertices in D. We also derive bounds and exact values of the reversing number for certain classes of acyclic diagraphs

    Coordination mechanism of cyanine dyes on the surface of core@active shell β-NaGdF4_{4}:Yb3+^{3+},Er3+^{3+} nanocrystals and its role in enhancing upconversion luminescence

    Get PDF
    The sensitization of lanthanide-doped upconversion nanocrystals (UCNCs) using organic dyes with a broad and intense optical absorption is an interesting approach for efficient excitation-energy harvesting and enhancing the upconversion luminescence of such UCNCs. In this work, an ultrasmall (∼6.5 nm in diameter) β-NaGdF4_{4}:Yb3+^{3+},Er3+^{3+} core and related core@shell UCNCs were sensitized using six NIR-excitable cyanine dyes with a wide range of functional groups and optical properties. The greatest UC enhancement of 680-times was observed for the conjugate between the Cy 754 dye and β-NaGdF4_{4}:Yb3+^{3+},Er3+^{3+}@NaGdF4_{4}:10%Yb3+,30^{3+},30%Nd^{3+} core@shell UCNCs excited using a 754 nm laser. The enhancement was estimated relative to NaGdF4_{4}:Yb3+^{3+},Er3+^{3+}@NaGdF4_{4}:10%Yb3+,30^{3+},30%Nd^{3+} core@shell UCNCs capped with oleic acid and excited using a similar intensity (75 W cm−2^{-2}) of a 980 nm laser. UC intensity measurements for identical dye-sensitized UCNCs carried out in methanol and in deuterated methanol under argon, as well as in air, allowed us to reveal the connection of the dye triplet states with UCNC sensitization as well as of the hydroxyl groups with quenching of the excited states of lanthanide ions. For UCNCs dispersed in methanol, the strong quenching UC luminescence was always observed, including core@shell UCNCs (with a shell of ∼2 nm). A strong influence of the triplet states of the dyes was observed for the two dyes Cy 754 and Cy 792 that bind firmly to UCNCs and allow the distances between the dye and the UCNC to be reduced, whereas the contribution of this sensitization pathway is very insignificant for Cy 740 and Cy 784 dyes that bind weakly to UCNCs

    Coordination mechanism of cyanine dyes on the surface of core@active shell β-NaGdF4:Yb3+,Er3+ nanocrystals and its role in enhancing upconversion luminescence

    Get PDF
    The sensitization of lanthanide-doped upconversion nanocrystals (UCNCs) using organic dyes with a broad and intense optical absorption is an interesting approach for efficient excitation-energy harvesting and enhancing the upconversion luminescence of such UCNCs. In this work, an ultrasmall (similar to 6.5 nm in diameter) beta-NaGdF4:Yb3+,Er3+ core and related core@shell UCNCs were sensitized using six NIR-excitable cyanine dyes with a wide range of functional groups and optical properties. The greatest UC enhancement of 680-times was observed for the conjugate between the Cy 754 dye and NaGdF4:Yb3+,Er3+@NaGdF4:10%Yb3+,30%Nd3+ core@shell UCNCs excited using a 754 nm laser. The enhancement was estimated relative to NaGdF4:Yb3+,Er3+@NaGdF4:10%Yb3+,30%Nd3+ core@shell UCNCs capped with oleic acid and excited using a similar intensity (75 W cm(-2)) of a 980 nm laser. UC intensity measurements for identical dye-sensitized UCNCs carried out in methanol and in deuterated methanol under argon, as well as in air, allowed us to reveal the connection of the dye triplet states with UCNC sensitization as well as of the hydroxyl groups with quenching of the excited states of lanthanide ions. For UCNCs dispersed in methanol, the strong quenching UC luminescence was always observed, including core@shell UCNCs (with a shell of similar to 2 nm). A strong influence of the triplet states of the dyes was observed for the two dyes Cy 754 and Cy 792 that bind firmly to UCNCs and allow the distances between the dye and the UCNC to be reduced, whereas the contribution of this sensitization pathway is very insignificant for Cy 740 and Cy 784 dyes that bind weakly to UCNCs

    Effect of a 1-Year Nutritional Blend Supplementation on Plasma p-tau181 and GFAP Levels among Community-Dwelling Older Adults: A Secondary Analysis of the Nolan Trial

    Get PDF
    BACKGROUND: Observational studies and some randomized controlled trials have suggested that nutritional supplementation could be a possible intervention pathway to prevent cognitive decline and Alzheimer's disease (AD). As measuring amyloid-β and tau pathophysiology by positron emission tomography (PET) or cerebrospinal fluid (CSF) analyses may be perceived as complex, plasma versions of such biomarkers have emerged as more accessible alternatives with comparable capacity of predicting cognitive impairment. OBJECTIVES: This study aimed to evaluate the effect of a 1-year intervention with a nutritional blend on plasma p-tau181 and glial fibrillary acidic protein (GFAP) levels in community-dwelling older adults. Effects were further assessed in exploratory analyses within sub-cohorts stratified according to p-tau status (with the third tertile considered as high: ≥15.1 pg/ mL) and to apolipoprotein E (APOE) ε4 allele status. METHODS: A total of 289 participants ≥70 years (56.4% female, mean age 78.1 years, SD=4.7) of the randomized, double-blind, multicenter, placebo-controlled Nolan trial had their plasma p-tau181 assessed, and daily took either a nutritional blend (composed of thiamin, riboflavin, niacin, pantothenic acid, pyridoxine, biotin, folic acid, cobalamin, vitamin E, vitamin C, vitamin D, choline, selenium, citrulline, eicosapentaenoic acid - EPA, and docosahexaenoic acid - DHA) or placebo for 1 year. RESULTS: After 1-year, both groups presented a significant increase in plasma p-tau181 and GFAP values, with no effect of the intervention (p-tau181 between-group difference: 0.27pg/mL, 95%CI: -0.95, 1.48; p=0.665; GFAP between-group difference: -3.28 pg/mL, 95%CI: -17.25, 10.69; p=0.644). P-tau-and APOE ε4-stratified analyses provided similar findings. CONCLUSIONS: In community-dwelling older adults, we observed an increase in plasma p-tau181 and GFAP levels that was not different between the supplementation groups after one year

    La lactation protège-t-elle le sein du cancer ?

    Get PDF

    Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties

    Get PDF
    Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization
    • …
    corecore