61 research outputs found

    Field Theoretical Approach to Electrochemical Deposition

    Full text link
    In this work we present an application of the lambda-phi^4 field theoretical model to the adsorption of atoms and molecules on metallic surfaces - the electrochemical deposition. The usual approach to this system consists in the computational simulation using Monte Carlo techniques of an effective lattice-gas Hamiltonian. We construct an effective model towards a comparison between the lattice-gas Hamiltonian and the discrete version of the lambda-phi^4 Hamiltonian, obtaining the relationships between the model parameters and electrochemical quantities. The lambda-phi^4 model is studied in the mean field approximation, and the results are fitted and compared to numerical simulated and experimental data.Comment: 9 pages, 5 figure

    Entropy-driven phase transition in a polydisperse hard-rods lattice system

    Full text link
    We study a system of rods on the 2d square lattice, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N=2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals

    Underpotential deposition of Cu on Au(111) in sulfate-containing electrolytes: a theoretical and experimental study

    Full text link
    We study the underpotential deposition of Cu on single-crystal Au(111) electrodes in sulfate-containing electrolytes by a combination of computational statistical-mechanics based lattice-gas modeling and experiments. The experimental methods are in situ cyclic voltammetry and coulometry and ex situ Auger electron spectroscopy and low-energy electron diffraction. The experimentally obtained voltammetric current and charge densities and adsorbate coverages are compared with the predictions of a two-component lattice-gas model for the coadsorption of Cu and sulfate. This model includes effective, lateral interactions out to fourth-nearest neighbors. Using group-theoretical ground-state calculations and Monte Carlo simulations, we estimate effective electrovalences and lateral adsorbate--adsorbate interactions so as to obtain overall agreement with experiments, including both our own and those of other groups. In agreement with earlier work, we find a mixed R3xR3 phase consisting of 2/3 monolayer Cu and 1/3 monolayer sulfate at intermediate electrode potentials, delimited by phase transitions at both higher and lower potentials. Our approach provides estimates of the effective electrovalences and lateral interaction energies, which cannot yet be calculated by first-principles methods.Comment: 36 pages, 14 Postscript figures are in uufiles for

    Two-dimensional lattice-fluid model with water-like anomalies

    Full text link
    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.Comment: 9 pages, 1 table, 7 figure

    Complex-Temperature Properties of the Ising Model on 2D Heteropolygonal Lattices

    Full text link
    Using exact results, we determine the complex-temperature phase diagrams of the 2D Ising model on three regular heteropolygonal lattices, (3636)(3 \cdot 6 \cdot 3 \cdot 6) (kagom\'{e}), (3122)(3 \cdot 12^2), and (482)(4 \cdot 8^2) (bathroom tile), where the notation denotes the regular nn-sided polygons adjacent to each vertex. We also work out the exact complex-temperature singularities of the spontaneous magnetisation. A comparison with the properties on the square, triangular, and hexagonal lattices is given. In particular, we find the first case where, even for isotropic spin-spin exchange couplings, the nontrivial non-analyticities of the free energy of the Ising model lie in a two-dimensional, rather than one-dimensional, algebraic variety in the z=e2Kz=e^{-2K} plane.Comment: 31 pages, latex, postscript figure

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    The electroreduction of hydrogen on platinum(111) in acidic media

    No full text
    We propose a new mechanism for the electroreduction of hydrogen in acidic media. The specific model and theoretical calculations are designed for the Pt(111) surface, because this is the only face that exhibits a clear first order phase transition. The basic mechanism however, applies to the other faces of Pt as well. The principal ingredient of our theory is the assumption that the water molecules in the inner Helmholtz layer are strongly oriented by the field. This means that hydrogen bonds have to be bent considerably. A correct water model has to be tetrahedral and flexible. Then, as the polarity of the electrode is changed: For positive electrodes most of water dipoles point down, and a zig-zag chain of hydrogen bonded water is formed which is responsible for the root3- x root7 (or perhaps root3- x 5/2) structure of the sulfate observed by STM. For negative polarization most of the water dipoles point up. The (bi)sulfate, and the water form a periodic structure by incorporating 1/3 of hydronium, which then is adsorbed with a hydrogen down in the hollow sites of the Pt(l 11) electrode. This compound is neutral and forms a two dimensional honeycomb arrangement of water with bisulfate ions. When the electrode becomes more negative, then the bisulfate is desorbed, but the honeycomb structure remains because of the reaction (H5O2+), + 6e(-) - 3H(2) + (H3O2-)(3) (1) This reaction is studied by a high accuracy generalized gradient PW91 calculation for a five layer Pt slab. The HER or intermediate reaction compound (H3O2-)(3) is stable on the Pt(111) face. The model is consistent with all known experiments: it reproduces well the experimental voltammogram and the recent radiotracer measurements of bisulfate adsorption. Furthermore, it gives a robust explanation of the 2/3 hydrogen yield for this surface. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore