9 research outputs found

    European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014

    No full text
    BACKGROUND: In August and September 2014, unexpected clusters of enterovirus-D68 (EV-D68) infections associated with severe respiratory disease emerged from North-America. In September, the European Centre for Disease Prevention and Control (ECDC) asked European countries to strengthen respiratory sample screening for enterovirus detection and typing in cases with severe respiratory presentations. OBJECTIVES: To provide a detailed picture of EV-D68 epidemiology in Europe by conducting a retrospective and prospective laboratory analysis of clinical specimens. STUDY DESIGN: An initiative supported by the European Society for Clinical Virology (ESCV) and ECDC was launched to screen for EV-D68 in respiratory specimens between July 1st and December 1st 2014 in Europe and to sequence the VP1 region of detected viruses for phylogenetic analytic purposes. RESULTS: Forty-two institutes, representing 51 laboratories from 17 European countries, analyzed 17,248 specimens yielding 389 EV-D68 positive samples (2.26%) in 14 countries. The proportion of positive samples ranged between 0 and 25% per country. These infections resulted primarily in mild respiratory disease, mainly detected in young children presenting with wheezing and in immuno-compromised adults. The viruses detected in Europe are genetically very similar to those of the North-American epidemic and the majority (83%) could be assigned to clade B. Except for 3 acute flaccid paralysis (AFP) cases, one death and limited ICU admissions, no severe cases were reported. CONCLUSIONS: The European study showed that EV-D68 circulated in Europe during summer and fall of 2014 with a moderate disease burden and different pathogenic profile compared to the North-American epidemic

    The software and hardware architecture of the real-time protection of in-vessel components in JET-ILW

    Get PDF
    For the first time, the JET operation in deuterium-tritium (D-T) plasma, which is scheduled to take place on JET in 2020, will be performed in the ITER mix of plasma-facing component materials. In view of the preparation of the DT campaign (DTE2), several aspects of the plasma operation require significant improvements, such as a real-time protection of the first wall. The risk of damaging the metallic PFCs caused by beryllium melting or cracking of tungsten owing to thermal fatigue required a new reliable D-T compatible active protection system. Therefore, the future development of the JET real time first wall protection is focused on the D-T campaign and the ITER relevant conditions which may cause failure of camera electronics within the Torus hall. In addition to the technological aspect, the intensive preparation of the diverse software tools and real time algorithms for hot spot detection as well as alarm handling strategy required for the wall protection is in progress. This contribution describes the improved design, implementation, and operation of the near infrared (NIR) imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET protection architecture. To provide the reliable wall protection during the DTE2, two more sensitive logarithmic NIR camera systems equipped with new optical relays to take images and cameras outside of the biological shield have been installed on JET-ILW and calibrated with an in-vessel calibration light source (ICLS). Additionally, post-pulse data visualization and advanced analysis of all types of imaging data is provided by the new software framework JUVIL (JET users video imaging library). The formation of hot spots is recognized as a significant threat due to rapid surface temperature rise. Because it could trigger the protection system to stop a pulse, it is important to identify the mechanisms and conditions responsible for the formation of such hot spots. To address this issue the new software tool ` Hotspot Editor' has been developed

    The software and hardware architecture of the real-time protection of in-vessel components in JET-ILW

    No full text
    For the first time, the JET operation in deuterium-tritium (D-T) plasma, which is scheduled to take place on JET in 2020, will be performed in the ITER mix of plasma-facing component materials. In view of the preparation of the DT campaign (DTE2), several aspects of the plasma operation require significant improvements, such as a real-time protection of the first wall. The risk of damaging the metallic PFCs caused by beryllium melting or cracking of tungsten owing to thermal fatigue required a new reliable D-T compatible active protection system. Therefore, the future development of the JET real time first wall protection is focused on the D-T campaign and the ITER relevant conditions which may cause failure of camera electronics within the Torus hall. In addition to the technological aspect, the intensive preparation of the diverse software tools and real time algorithms for hot spot detection as well as alarm handling strategy required for the wall protection is in progress.This contribution describes the improved design, implementation, and operation of the near infrared (NIR) imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET protection architecture. To provide the reliable wall protection during the DTE2, two more sensitive logarithmic NIR camera systems equipped with new optical relays to take images and cameras outside of the biological shield have been installed on JET-ILW and calibrated with an in-vessel calibration light source (ICLS). Additionally, post-pulse data visualization and advanced analysis of all types of imaging data is provided by the new software framework JUVIL (JET users video imaging library). The formation of hot spots is recognized as a significant threat due to rapid surface temperature rise. Because it could trigger the protection system to stop a pulse, it is important to identify the mechanisms and conditions responsible for the formation of such hot spots. To address this issue the new software tool ` Hotspot Editor' has been developed

    Decomposition Procedures in Inorganic Analysis

    No full text
    corecore