2,388 research outputs found
Novelty and Collective Attention
The subject of collective attention is central to an information age where
millions of people are inundated with daily messages. It is thus of interest to
understand how attention to novel items propagates and eventually fades among
large populations. We have analyzed the dynamics of collective attention among
one million users of an interactive website -- \texttt{digg.com} -- devoted to
thousands of novel news stories. The observations can be described by a
dynamical model characterized by a single novelty factor. Our measurements
indicate that novelty within groups decays with a stretched-exponential law,
suggesting the existence of a natural time scale over which attention fades
Flow of emotional messages in artificial social networks
Models of message flows in an artificial group of users communicating via the
Internet are introduced and investigated using numerical simulations. We
assumed that messages possess an emotional character with a positive valence
and that the willingness to send the next affective message to a given person
increases with the number of messages received from this person. As a result,
the weights of links between group members evolve over time. Memory effects are
introduced, taking into account that the preferential selection of message
receivers depends on the communication intensity during the recent period only.
We also model the phenomenon of secondary social sharing when the reception of
an emotional e-mail triggers the distribution of several emotional e-mails to
other people.Comment: 10 pages, 7 figures, submitted to International Journal of Modern
Physics
Economics-Based Optimization of Unstable Flows
As an example for the optimization of unstable flows, we present an
economics-based method for deciding the optimal rates at which vehicles are
allowed to enter a highway. It exploits the naturally occuring fluctuations of
traffic flow and is flexible enough to adapt in real time to the transient flow
characteristics of road traffic. Simulations based on realistic parameter
values show that this strategy is feasible for naturally occurring traffic, and
that even far from optimality, injection policies can improve traffic flow.
Moreover, the same method can be applied to the optimization of flows of gases
and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397).
For related work see http://www.parc.xerox.com/dynamics/ and
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Properties of weighted complex networks
We study two kinds of weighted networks, weighted small-world (WSW) and
weighted scale-free (WSF). The weight of a link between nodes and
in the network is defined as the product of endpoint node degrees; that is
. In contrast to adding weights to links during
networks being constructed, we only consider weights depending on the ``
popularity\rq\rq of the nodes represented by their connectivity. It was found
that the both weighted networks have broad distributions on characterization
the link weight, vertex strength, and average shortest path length.
Furthermore, as a survey of the model, the epidemic spreading process in both
weighted networks was studied based on the standard \emph{susceptible-infected}
(SI) model. The spreading velocity reaches a peak very quickly after the
infection outbreaks and an exponential decay was found in the long time
propagation.Comment: 14 pages, 5 figure
Evolution of reference networks with aging
We study the growth of a reference network with aging of sites defined in the
following way. Each new site of the network is connected to some old site with
probability proportional (i) to the connectivity of the old site as in the
Barab\'{a}si-Albert's model and (ii) to , where is the
age of the old site. We consider of any sign although reasonable
values are . We find both from simulation and
analytically that the network shows scaling behavior only in the region . When increases from to 0, the exponent of the
distribution of connectivities ( for large ) grows
from 2 to the value for the network without aging, i.e. to 3 for the
Barab\'{a}si-Albert's model. The following increase of to 1 makes
to grow to . For the distribution is
exponentional, and the network has a chain structure.Comment: 4 pages revtex (twocolumn, psfig), 5 figure
Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.
BackgroundThere are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.ResultsWe morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.ConclusionsTaken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation
Intermittent exploration on a scale-free network
We study an intermittent random walk on a random network of scale-free degree
distribution. The walk is a combination of simple random walks of duration
and random long-range jumps. While the time the walker needs to cover all
the nodes increases with , the corresponding time for the edges displays a
non monotonic behavior with a minimum for some nontrivial value of . This
is a heterogeneity-induced effect that is not observed in homogeneous
small-world networks. The optimal increases with the degree of
assortativity in the network. Depending on the nature of degree correlations
and the elapsed time the walker finds an over/under-estimate of the degree
distribution exponent.Comment: 12 pages, 3 figures, 1 table, published versio
Maximum flow and topological structure of complex networks
The problem of sending the maximum amount of flow between two arbitrary
nodes and of complex networks along links with unit capacity is
studied, which is equivalent to determining the number of link-disjoint paths
between and . The average of over all node pairs with smaller degree
is for large with a constant implying that the statistics of is related to the
degree distribution of the network. The disjoint paths between hub nodes are
found to be distributed among the links belonging to the same edge-biconnected
component, and can be estimated by the number of pairs of edge-biconnected
links incident to the start and terminal node. The relative size of the giant
edge-biconnected component of a network approximates to the coefficient .
The applicability of our results to real world networks is tested for the
Internet at the autonomous system level.Comment: 7 pages, 4 figure
Scaling Behaviour of Developing and Decaying Networks
We find that a wide class of developing and decaying networks has scaling
properties similar to those that were recently observed by Barab\'{a}si and
Albert in the particular case of growing networks. The networks considered here
evolve according to the following rules: (i) Each instant a new site is added,
the probability of its connection to old sites is proportional to their
connectivities. (ii) In addition, (a) new links between some old sites appear
with probability proportional to the product of their connectivities or (b)
some links between old sites are removed with equal probability.Comment: 7 pages (revtex
Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model
We generalize the Barab\'{a}si--Albert's model of growing networks accounting
for initial properties of sites and find exactly the distribution of
connectivities of the network and the averaged connectivity
of a site in the instant (one site is added per unit of
time). At long times at and
at , where the exponent
varies from 2 to depending on the initial attractiveness of sites. We
show that the relation between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur
- …
