2,867 research outputs found

    Neutrino Factories: Physics Potential

    Full text link
    The physics potential of low-performance and high-performance neutrino factories is briefly reviewed..Comment: Talk presented at NUFACT02, London, 1-6 July, 2002. 8 pages, 5 figure

    Gribov horizon and i-particles: about a toy model and the construction of physical operators

    Get PDF
    Restricting the functional integral to the Gribov region Ω\Omega leads to a deep modification of the behavior of Euclidean Yang-Mills theories in the infrared region. For example, a gluon propagator of the Gribov type, k2k4+γ^4\frac{k^2}{k^4+{\hat \gamma}^4}, can be viewed as a propagating pair of unphysical modes, called here ii-particles, with complex masses ±iγ^2\pm i{\hat \gamma}^2. From this viewpoint, gluons are unphysical and one can see them as being confined. We introduce a simple toy model describing how a suitable set of composite operators can be constructed out of ii-particles whose correlation functions exhibit only real branch cuts, with associated positive spectral density. These composite operators can thus be called physical and are the toy analogy of glueballs in the Gribov-Zwanziger theory.Comment: 35 pages, 10 .pdf figures. v2: version accepted for publication in Physical Review

    Critical behavior of the (2+1)-dimensional Thirring model

    Full text link
    We investigate chiral symmetry breaking in the (2+1)-dimensional Thirring model as a function of the coupling as well as the Dirac flavor number Nf with the aid of the functional renormalization group. For small enough flavor number Nf < Nfc, the model exhibits a chiral quantum phase transition for sufficiently large coupling. We compute the critical exponents of this second order transition as well as the fermionic and bosonic mass spectrum inside the broken phase within a next-to-leading order derivative expansion. We also determine the quantum critical behavior of the many-flavor transition which arises due to a competition between vector and chiral-scalar channel and which is of second order as well. Due to the problem of competing channels, our results rely crucially on the RG technique of dynamical bosonization. For the critical flavor number, we find Nfc ~ 5.1 with an estimated systematic error of approximately one flavor.Comment: 28 pages, 14 figure

    Spiral Motion in a Noisy Complex Ginzburg-Landau Equation

    Full text link
    The response of spiral waves to external perturbations in a stable regime of the two-dimensional complex Ginzburg-Landau equation (CGLE) is investigated. It is shown that the spiral core has a finite mobility and performs Brownian motion when driven by white noise. Combined with simulation results, this suggests that defect-free and quasi-frozen states in the noiseless CGLE are unstable against free vortex excitation at any non-zero noise strength.Comment: RevTex, 4 pages, 3 figures, submitted to Phys. Rev. Let

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    Full text link
    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K and Double Chooz results. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capability. For large theta_13, however, a single-baseline beta beam experiment cannot compete if it is constrained by the CERN-SPS. For a neutrino factory, because of the missing charge identification possibility in the detector, a very good energy resolution is required. If this can be achieved, especially a low energy neutrino factory, which does not suffer from the tau contamination, may be an interesting option for large theta_13. For the superbeam, where we use the LBNE beam as a reference, electron neutrino flavor identification and statistics are two of the main limitations. Finally, we demonstrate that, at least in principle, neutrino factory and superbeam can measure the density of the Earth's core to the sub-percent level for sin^2 2theta_13 larger than 0.01.Comment: 34 pages, 15 figures. Minor changes and accepted in JHE

    Reducing Constraints in a Higher Dimensional Extension of the Randall and Sundrum Model

    Get PDF
    In order to investigate the phenomenological implications of warped spaces in more than five dimensions, we consider a 4+1+δ4+1+\delta dimensional extension to the Randall and Sundrum model in which the space is warped with respect to a single direction by the presence of an anisotropic bulk cosmological constant. The Einstein equations are solved, giving rise to a range of possible spaces in which the δ\delta additional spaces are warped. Here we consider models in which the gauge fields are free to propagate into such spaces. After carrying out the Kaluza Klein (KK) decomposition of such fields it is found that the KK mass spectrum changes significantly depending on how the δ\delta additional dimensions are warped. We proceed to compute the lower bound on the KK mass scale from electroweak observables for models with a bulk SU(2)×U(1)SU(2)\times U(1) gauge symmetry and models with a bulk SU(2)R×SU(2)L×U(1)SU(2)_R\times SU(2)_L\times U(1) gauge symmetry. It is found that in both cases the most favourable bounds are approximately MKK2M_{KK}\gtrsim 2 TeV, corresponding to a mass of the first gauge boson excitation of about 4-6 TeV. Hence additional warped dimensions offer a new way of reducing the constraints on the KK scale.Comment: 27 pages, 15 figures, v3: Additional comments in sections 1, 2 and 4. New appendix added. Five additional figures. References adde

    Sulfur cycling connects microbiomes and biogeochemistry in deep-sea hydrothermal plumes

    Get PDF
    In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their characteristics are determined by geochemical sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However, the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding of microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to understand links between biogeography, evolution, and metabolic connectivity, and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 36 diverse plume samples from seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and drives metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy landscapes and promotes microbial growth, while other energy sources influence local energy landscapes. We further demonstrated the consistency of links among geochemistry, function, and taxonomy. Amongst all microbial metabolisms, sulfur transformations had the highest MW-score, a measure of metabolic connectivity in microbial communities. Additionally, plume microbial populations have low diversity, short migration history, and gene-specific sweep patterns after migrating from background seawater. Selected functions include nutrient uptake, aerobic oxidation, sulfur oxidation for higher energy yields, and stress responses for adaptation. Our findings provide the ecological and evolutionary bases of change in sulfur-driven microbial communities and their population genetics in adaptation to changing geochemical gradients in the oceans

    The Orbital Order Parameter in La0.95Sr0.05MnO3 probed by Electron Spin Resonance

    Full text link
    The temperature dependence of the electron-spin resonance linewidth in La0.95Sr0.05MnO3 has been determined and analyzed in the paramagnetic regime across the orbital ordering transition. From the temperature dependence and the anisotropy of linewidth and gg-value the orbital order can be unambiguously determined via the mixing angle of the wave functions of the ege_{\rm g}-doublet. The linewidth shows a similar evolution with temperature as resonant x-ray scattering results

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R&lt;sub&gt;alt&lt;/sub&gt;) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R&lt;sub&gt;alt&lt;/sub&gt; are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose
    corecore