22,460 research outputs found

    Mapping out the time-evolution of exoplanet processes

    Get PDF
    There are many competing theories and models describing the formation, migration and evolution of exoplanet systems. As both the precision with which we can characterize exoplanets and their host stars, and the number of systems for which we can make such a characterization increase, we begin to see pathways forward for validating these theories. In this white paper we identify predicted, observable correlations that are accessible in the near future, particularly trends in exoplanet populations, radii, orbits and atmospheres with host star age. By compiling a statistically significant sample of well-characterized exoplanets with precisely measured ages, we should be able to begin identifying the dominant processes governing the time-evolution of exoplanet systems.Comment: Astro2020 white pape

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure

    R2D2 - a symmetric measurement of reactor neutrinos free of systematical errors

    Full text link
    We discuss a symmetric setup for a reactor neutrino oscillation experiment consisting of two reactors separated by about 1 km, and two symmetrically placed detectors, one close to each reactor. We show that such a configuration allows a determination of sin⁥22Ξ13\sin^22\theta_{13} which is essentially free of systematical errors, if it is possible to separate the contributions of the two reactors in each detector sufficiently. This can be achieved either by considering data when in an alternating way only one reactor is running or by directional sensitivity obtained from the neutron displacement in the detector.Comment: 11 pages, 3 figures, clarifications added, some numbers in relation with the neutron displacement corrected, version to appear in JHE

    Gribov horizon and BRST symmetry: a pathway to confinement

    Full text link
    We summarize the construction of the Gribov-Zwanziger action and how it leads to a scenario which explains the confinement of gluons, in the sense that the elementary gluon excitations violate positivity. Then we address the question of how one can construct operators within this picture whose one-loop correlation functions have the correct analytic properties in order to correspond to physical excitations. For this we introduce the concept of i-particles.Comment: 5 pages, proceedings of XII Mexican Workshop on Particles and Fields 200

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.
    • 

    corecore