279 research outputs found
Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.
Interstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagnoses. Recent approaches employ computer-aided diagnostic tools to improve detection of disease, monitoring, and accurate prognostication. Methods based on artificial intelligence (AI) may be used in computational medicine, especially in image-based specialties such as radiology. This review summarises and highlights the strengths and weaknesses of the latest and most significant published methods that could lead to a holistic system for ILD diagnosis. We explore current AI methods and the data use to predict the prognosis and progression of ILDs. It is then essential to highlight the data that holds the most information related to risk factors for progression, e.g., CT scans and pulmonary function tests. This review aims to identify potential gaps, highlight areas that require further research, and identify the methods that could be combined to yield more promising results in future studies
Coronary CT FFR vs Invasive Adenosine and Dobutamine FFR in a Right Anomalous Coronary Artery.
We present the management of an anomalous coronary artery originating from the opposite sinus of Valsalva with comprehensive diagnostic workup including noninvasive coronary computed tomography (CT) derived fractional flow reserve (FFR) and invasive dobutamine-volume challenge-FFR/intravascular ultrasound. After surgical operation, treatment success was quantified by anatomical and functional analysis in postoperative CT. (Level of Difficulty: Advanced.)
Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors
Large mass ice/water Cherenkov experiments, optimized to detect low energy
(1-20 GeV) atmospheric neutrinos, have the potential to discriminate between
normal and inverted neutrino mass hierarchies. The sensitivity depends on
several model and detector parameters, such as the neutrino flux profile and
normalization, the Earth density profile, the oscillation parameter
uncertainties, and the detector effective mass and resolution. A proper
evaluation of the mass hierarchy discrimination power requires a robust
statistical approach. In this work, the Toy Monte Carlo, based on an extended
unbinned likelihood ratio test statistic, was used. The effect of each model
and detector parameter, as well as the required detector exposure, was then
studied. While uncertainties on the Earth density and atmospheric neutrino flux
profiles were found to have a minor impact on the mass hierarchy
discrimination, the flux normalization, as well as some of the oscillation
parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP})
uncertainties and correlations resulted critical. Finally, the minimum required
detector exposure, the optimization of the low energy threshold, and the
detector resolutions were also investigated.Comment: 23 pages, 16 figure
Visualising myocardial injury after noncardiac surgery: a case series using postoperative cardiovascular MRI.
Myocardial injury after noncardiac surgery (MINS) and perioperative myocardial injury are associated with increased morbidity and mortality. Both are diagnosed by a perioperative increase in troponin, yet there is controversy if MINS is a genuine myocardial insult. We applied postoperative cardiovascular magnetic resonance T2 mapping techniques to visualise acute myocardial injury (i.e. oedema) in six patients with multiple cardiovascular risk factors who underwent aortic surgery. The burden of myocardial oedema was substantially higher in four patients with elevated troponin qualifying for MINS, compared with patients without MINS. The data and images suggest that MINS represents genuine myocardial injury
Avoiding the Intercostal Arteries in Percutaneous Thoracic Interventions.
The purpose of this study was to define relevant intercostal artery (ICA) anatomy potentially impacting the safety of thoracic percutaneous interventional procedures. An ICA abutting the upper rib and running in the subcostal groove was defined as the lowest risk zone for interventions requiring a supracostal needle puncture. A theoretical high-risk zone was defined by the ICA coursing in the lower half of the intercostal space (ICS), and a theoretical moderate-risk zone was defined by the ICA coursing below the subcostal groove but in the upper half of the ICS. Arterial phase computed tomography data from 250 patients were analyzed, revealing demographic variability, with high-risk zones extending more laterally with advancing age and with more cranial ribs. Overall, within the 97.5th percentile, an ICS puncture >7-cm lateral to the spinous process incurs moderate risk and >10-cm lateral incurs the lowest risk
Reproducibility and its confounders of CMR feature tracking myocardial strain analysis in patients with suspected myocarditis.
OBJECTIVES
Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique for assessing myocardial strain with valuable diagnostic and prognostic potential. However, the reproducibility of biventricular CMR-FT analysis in a large cardiovascular population has not been assessed. Also, evidence of confounders impacting reader reproducibility for CMR-FT in patients is unknown and currently limits the clinical implementation of this technique.
METHODS
From a dual-center database of patients referred to CMR for suspected myocarditis, 125 patients were randomly selected to undergo biventricular CMR-FT analysis for 2-dimensional systolic and diastolic measures, with additional 3-dimensional analysis for the left ventricle. All image analysis was replicated by a single reader and by a second reader for intra- and inter-reader analysis (Circle Cardiovascular Imaging). Reliability was tested with intraclass correlation (ICC) tests, and the impact of imaging confounders on agreement was assessed through multivariable analysis.
RESULTS
Left and right ventricular ejection fractions were reduced in 34% and 37% of the patients, respectively. Good to excellent reliability was shown for 2D (all ICC > 0.85) and 3D (all ICC > 0.70) peak strain and early diastolic strain rate for both ventricles in longitudinal orientation as well as circumferential orientations for the left ventricle. An increased slice number improved agreement while the presence of pericardial effusion compromised diastolic strain rate agreement, and arrhythmia compromised right ventricular agreement.
CONCLUSION
In a large clinical cohort, we could show CMR-FT yields excellent inter-reader and intra-reader reproducibility. Multi-parametric CMR-FT of the right and left ventricles appears to be a robust tool in cardiovascular patients referred to CMR.
CLINICAL TRIAL REGISTRATION
ClinicalTrials.gov Identifier: NCT03470571, NCT04774549. Key Points • Cardiovascular magnetic resonance feature tracking (CMR-FT) is an emerging technique to measure myocardial strain in cardiovascular patients referred for CMR; however, the evaluation of its reproducibility in a large cohort has not yet been performed. • In a large clinical cohort, CMR-FT yields excellent inter-reader and intra-reader reproducibility for both left and right ventricular systolic and diastolic parameters. • Arrhythmia and pericardial effusion compromise agreement of select FT parameters, but poor ejection fraction does not
Direct comparison of whole heart quantifications between different retrospective and prospective gated 4D flow CMR acquisitions.
INTRODUCTION
4D flow cardiovascular magnetic resonance (CMR) is a versatile technique to non-invasively assess cardiovascular hemodynamics. With developing technology, choice in sequences and acquisition parameters is expanding and it is important to assess if data acquired with these different variants can be directly compared, especially when combining datasets within research studies. For example, sequences may allow a choice in gating techniques or be limited to one method, yet there is not a direct comparison investigating how gating selection impacts quantifications of the great vessels, semilunar and atrioventricular valves and ventricles. Thus, this study investigated if quantifications across the heart from contemporary 4D flow sequences are comparable between two commonly used 4D flow sequences reliant on different ECG gating techniques.
METHODS
Forty participants (33 healthy controls, seven patients with coronary artery disease and abnormal diastolic function) were prospectively recruited into a single-centre observational study to undergo a 3T-CMR exam. Two acquisitions, a k-t GRAPPA 4D flow with prospective gating (4Dprosp) and a modern compressed sensing 4D flow with retrospective gating (4Dretro), were acquired in each participant. Images were analyzed for volumes, flow rates and velocities in the vessels and four valves, and for biventricular kinetic energy and flow components. Data was compared for group differences with paired t-tests and for agreement with Bland-Altman and intraclass correlation (ICC).
RESULTS
Measurements primarily occurring during systole of the great vessels, semilunar valves and both left and right ventricles did not differ between acquisition types (p > 0.05 from t-test) and yielded good to excellent agreement (ICC: 0.75-0.99). Similar findings were observed for the majority of parameters dependent on early diastole. However, measurements occurring in late diastole or those reliant on the entire-cardiac cycle such as flow component volumes along with diastolic kinetic energy values were not similar between 4Dprosp and 4Dretro acquisitions resulting in poor agreement (ICC < 0.50).
DISCUSSION
Direct comparison of measurements between two different 4D flow acquisitions reliant on different gating methods demonstrated systolic and early diastolic markers across the heart should be compatible when comparing these two 4D flow sequences. On the other hand, late diastolic and intraventricular parameters should be compared with caution
828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser
This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 μm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper
Diagnostic performance of quantitative coronary artery disease assessment using computed tomography in patients with aortic stenosis undergoing transcatheter aortic-valve implantation.
BACKGROUND
Computed tomography angiography (CTA) is a cornerstone in the pre- transcatheter aortic valve replacement (TAVI) assessment. We evaluated the diagnostic performance of CTA and coronary artery calcium score (CACS) for CAD evaluation compared to invasive coronary angiography in a cohort of TAVI patients.
METHODS
In consecutive TAVI patients without prior coronary revascularization and device implants, CAD was assessment by quantitative analysis in CTA. (a) Patients with non-evaluable segments were classified as obstructive CAD. (b) In patients with non-evaluable segments a CACS cut-off of 100 was applied for obstructive CAD. The reference standard was quantitative invasive coronary angiography (QCA, i.e. ≥ 50% stenosis).
RESULTS
100 consecutive patients were retrospectively included, age was 82.3 ± 6.5 years and 30% of patients had CAD. In 16% of the patients, adequate visualization of the entire coronary tree (all 16 segments) was possible with CTA, while 84% had at least one segment which was not evaluable for CAD analysis due to impaired image quality. On a per-patient analysis, where patients with low image quality were classified as CAD, CTA showed a sensitivity of 100% (95% CI 88.4-100.0), specificity of 11.4% (95% CI 5.1-21.3), PPV of 32.6% (95% CI 30.8-34.5), NPV of 100% and diagnostic accuracy of 38% (95% CI 28.5-48.3) for obstructive CAD. When applying a combined approach of CTA (in patients with good image quality) and CACS (in patients with low image quality), the sensitivity and NPV remained at 100% and obstructive CAD could be ruled out in 20% of the TAVI patients, versus 8% using CTA alone.
CONCLUSION
In routinely acquired pre-TAVI CTA, the image quality was insufficient in a high proportion of patients for the assessment of the entire coronary artery tree. However, when adding CACS in patients with low image quality to quantitative CTA assessment in patients with good image quality, obstructive CAD could be ruled-out in 1/5 of the patients and may therefore constitute a strategy to streamline pre-procedural workup, and reduce risk, radiation and costs in selected TAVI patients without prior coronary revascularization or device implants
- …