12,545 research outputs found

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    A chemical model for lunar non-mare rocks

    Get PDF
    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. For these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original, but not necessarily primitive, lunar materials

    A chemical model for lunar non-mare rocks

    Get PDF
    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. It is shown that for these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original but not necessarily primitive lunar materials

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Compressibility of the Two-Dimensional infinite-U Hubbard Model

    Full text link
    We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard excitations and their effects on the low energy properties in the U=∞U=\infty Hubbard model. Within the framework of a systematic large-N expansion, these effects first occur in the next to leading order in 1/N. We calculate the scattering phase shift and the free energy, and determine the quasiparticle weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly renormalized and diverges at a critical doping δc=0.07±0.01\delta_c=0.07\pm0.01. We discuss the nature of this zero-temperature phase transition and its connection to phase separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let

    Many-body approach to the nonlinear interaction of charged particles with an interacting free electron gas

    Get PDF
    We report various many-body theoretical approaches to the nonlinear decay rate and energy loss of charged particles moving in an interacting free electron gas. These include perturbative formulations of the scattering matrix, the self-energy, and the induced electron density. Explicit expressions for these quantities are obtained, with inclusion of exchange and correlation effects.Comment: 11 pages, 5 figures. To appear in Journal of Physics

    Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets

    Full text link
    We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.Comment: 22 pages, including 14 figures. Accepted to the Astrophysical Journa

    Sequence composition and environment effects on residue fluctuations in protein structures

    Get PDF
    The spectrum and scale of fluctuations in protein structures affect the range of cell phenomena, including stability of protein structures or their fragments, allosteric transitions and energy transfer. The study presents a statistical-thermodynamic analysis of relationship between the sequence composition and the distribution of residue fluctuations in protein-protein complexes. A one-node-per residue elastic network model accounting for the nonhomogeneous protein mass distribution and the inter-atomic interactions through the renormalized inter-residue potential is developed. Two factors, a protein mass distribution and a residue environment, were found to determine the scale of residue fluctuations. Surface residues undergo larger fluctuations than core residues, showing agreement with experimental observations. Ranking residues over the normalized scale of fluctuations yields a distinct classification of amino acids into three groups. The structural instability in proteins possibly relates to the high content of the highly fluctuating residues and a deficiency of the weakly fluctuating residues in irregular secondary structure elements (loops), chameleon sequences and disordered proteins. Strong correlation between residue fluctuations and the sequence composition of protein loops supports this hypothesis. Comparing fluctuations of binding site residues (interface residues) with other surface residues shows that, on average, the interface is more rigid than the rest of the protein surface and Gly, Ala, Ser, Cys, Leu and Trp have a propensity to form more stable docking patches on the interface. The findings have broad implications for understanding mechanisms of protein association and stability of protein structures.Comment: 8 pages, 4 figure

    Exact Solution of a Electron System Combining Two Different t-J Models

    Full text link
    A new strongly correlated electron model is presented. This is formed by two types of sites: one where double occupancy is forbidden, as in the t-J model, and the other where double occupancy is allowed but vacancy is not allowed, as an inverse t-J model. The Hamiltonian shows nearest and next-to-nearest neighbour interactions and it is solved by means of a modified algebraic nested Bethe Ansatz. The number of sites where vacancy is not allowed, may be treated as a new parameter if the model is looked at as a t-J model with impurities. The ground and excited states are described in the thermodynamic limit.Comment: Some corrections and references added. To be published in J. Phys.

    Fractional Aharonov-Bohm effect in mesoscopic rings

    Full text link
    We study the effects of correlations on a one dimensional ring threaded by a uniform magnetic flux. In order to describe the interaction between particles, we work in the framework of the U ∞\infty Hubbard and tt-JJ models. We focus on the dilute limit. Our results suggest the posibility that the persistent current has an anomalous periodicity Ï•0/p\phi_{0}/p, where pp is an integer in the range 2≤p≤Ne2\leq p\leq N_{e} (NeN_{e} is the number of particles in the ring and Ï•0\phi_{0} is the flux quantum). We found that this result depends neither on disorder nor on the detailed form of the interaction, while remains the on site infinite repulsion.Comment: 14 pages (Revtex), 5 postscript figures. Send e-mail to: [email protected]
    • …
    corecore