126 research outputs found

    Provenance and transport of supraglacial debris revealed by variations in debris geochemistry on Khumbu Glacier, Nepal Himalaya

    Get PDF
    The origin of supraglacial debris covers is often conceptualised as the formation of a surface lag by melt-out of englacial debris from slow-moving ice, where complexity arises from feedback between debris thickness and sub-debris ice melt. Here, we examine the origin of a debris cover from the perspective of debris provenance and changing tributary supply in a high-elevation compound valley glacier. Geochemical analysis of 11 major elements in 21 debris samples from six tributaries of Khumbu Glacier (Nepal) shows unambiguous statistical differentiation of debris sources reflecting lithological differences between tributary catchments. Twenty-four samples from transects across the ablation area are partitioned according to their source areas using the FR2000 sediment unmixing model. We estimate the age of ice at each transect using a higher order ice flow model. The results show greater proportions of debris from lateral tributaries in downglacier locations that have experienced longer flowline histories. More recently, ice from the Main Himalayan Divide (Western Cwm) has become relatively more important. This suggests a change in the state of the lower glacier's structure depending on the relative ice discharges of lateral and divide sources. Ice flux from lower elevation tributaries was more important probably prior to a weakening of the Indian Summer Monsoon at around 1420 CE. The lower elevation tributaries lie within the range of late Holocene equilibrium line altitude variation and therefore respond most sensitively to climatic drivers of the glacier's flow structure. Negative glacier mass balance since around 1900 CE caused tributary glaciers to detach and high-elevation catchments to re-establish as the dominant ice source to Khumbu Glacier

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Physics basis and simulation of burning plasma physics for the fusion ignition research experiment (FIRE)

    Get PDF
    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Overview of the JET results in support to ITER

    Get PDF
    • 

    corecore