10 research outputs found

    Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent)

    Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Get PDF
    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phase

    Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction

    No full text
    A cloud property retrieved from multispectral imagers having spectral channels in the shortwave infrared (SWIR) and/or midwave infrared (MWIR) is the cloud effective particle radius (CER), a radiatively relevant weighting of the cloud particle size distribution. The physical basis of the CER retrieval is the dependence of SWIR/MWIR cloud reflectance on the cloud particle single scattering albedo, which in turn depends on the complex index of refraction of bulk liquid water (or ice) in addition to the cloud particle size. There is a general consistency in the choice of the liquid water index of refraction by the cloud remote sensing community, largely due to the few available independent datasets and compilations. Here we examine the sensitivity of CER retrievals to the available laboratory index of refraction datasets in the SWIR and MWIR using the retrieval software package that produces NASA’s standard Moderate Resolution Imaging Spectroradiometer (MODIS)/Visible Infrared Imaging Radiometer suite (VIIRS) continuity cloud products. The sensitivity study incorporates two laboratory index of refraction datasets that include measurements at supercooled water temperatures, one in the SWIR and one in the MWIR. Neither has been broadly utilized in the cloud remote sensing community. It is shown that these two new datasets can significantly change CER retrievals (e.g., 1–2 µm) relative to common datasets used by the community. Further, index of refraction data for a 265 K water temperature gives more consistent retrievals between the two spectrally distinct 2.2 µm atmospheric window channels on MODIS and VIIRS. As a result, 265 K values from the SWIR and MWIR index of refraction datasets were adopted for use in the production version of the continuity cloud product. The results indicate the need to better understand temperature-dependent bulk water absorption and uncertainties in these spectral regions

    Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    No full text
    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability
    corecore