73 research outputs found

    Preparation and Properties of Various Magnetic Nanoparticles

    Get PDF
    The fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length) of iron oxides (mainly γ-Fe2O3) in the Fe2O3 sample was 30 nm, while in Fe2O3/SiO2 where the ε-Fe2O3 phase dominated it was only 14 nm. Gd/SiO2 nanoparticles were found to be completely amorphous, according to XRD. The samples showed various shapes of hysteresis loops and different coercivities. Differences in the saturation magnetization (MS) correspond to the chemical and phase composition of the sample materials. However, we observed that MS was not reached in the case of Fe2O3/SiO2, while for Gd/SiO2 sample the MS value was extremely low. Therefore we conclude that only unmodified Fe2O3 nanoparticles are suitable for intended biosensing application in vitro (e.g. detection of viral nucleic acids) and the phase purification of this sample for this purpose is not necessary

    Voltammetric Sensor for Direct Insulin Detection

    Get PDF
    AbstractThis work covers an area of planar electrochemical sensors for fast and reliable detection of species in environment under field conditions or in vitro/vivo biodetection. In this work, there were fabricated several planar carbon working electrodes using standard thick film technology which were modified with multiwalled carbon nanotubes (MWCNTs) to promote the electrochemical oxidation of insulin. These standalone planar working electrodes were successfully used for direct detection of insulin using cyclic voltammetry in electrochemical cell against conventional Ag/AgCl reference electrode and platinum auxiliary electrode

    Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    Get PDF
    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode

    Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species

    Get PDF
    Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms.Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms

    Self-ordered TiO2 quantum dot array prepared via anodic oxidation

    Get PDF
    The template-based methods belong to low-cost and rapid preparation techniques for various nanostructures like nanowires, nanotubes, and nanodots or even quantum dots [QDs]. The nanostructured surfaces with QDs are very promising in the application as a sensor array, also called 'fluorescence array detector.' In particular, this new sensing approach is suitable for the detection of various biomolecules (DNA, proteins) in vitro (in clinical diagnostics) as well as for in vivo imaging
    corecore