65 research outputs found

    A genome-wide scan for quantitative trait loci affecting limb bone lengths and areal bone mineral density of the distal femur in a White Duroc × Erhualian F2 population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Limb bone lengths and bone mineral density (BMD) have been used to assess the bone growth and the risk of bone fractures in pigs, respectively. It has been suggested that limb bone lengths and BMD are under genetic control. However, the knowledge about the genetic basis of the limb bone lengths and mineralisatinon is limited in pigs. The aim of this study was to identify quantitative trait loci (QTL) affecting limb bone lengths and BMD of the distal femur in a White Duroc × Erhualian resource population.</p> <p>Results</p> <p>Limb bone lengths and femoral bone mineral density (fBMD) were measured in a total of 1021 and 116 F<sub>2 </sub>animals, respectively. There were strong positive correlations among the lengths of limb bones and medium positive correlations between the lengths of limb bones and fBMD. A whole-genome scan involving 183 microsatellite markers across the pig genome revealed 35 QTL for the limb bone lengths and 2 for femoral BMD. The most significant QTL for the lengths of five limb bones were mapped on two chromosomes affecting all 5 limb bones traits. One was detected around 57 cM on pig chromosome (SSC) 7 with the largest <it>F</it>-value of more than 26 and 95% confidence intervals of less than 5 cM, providing a crucial start point to identify the causal genes for these traits. The Erhualian alleles were associated with longer limb bones. The other was located on SSCX with a peak at 50–53 cM, whereas alleles from the White Duroc breed increased the bone length. Many QTL identified are homologous to the human genomic regions containing QTL for bone-related traits and a list of interesting candidate genes.</p> <p>Conclusion</p> <p>This study detected the QTL for the lengths of scapula, ulna, humerus and tibia and fBMD in the pig for the first time. Moreover, several new QTL for the pig femoral length were found. As correlated traits, QTL for the lengths of five limb bones were mainly located in the same genomic regions. The most promising QTL for the lengths of five limb bones on SSC7 merits further investigation.</p

    Genome-wide QTL mapping for three traits related to teat number in a White Duroc × Erhualian pig resource population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is also a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. The knowledge of its genetic control is still limited. In this study, a genome-wide scan was performed with 183 microsatellites covering the pig genome to identify quantitative trait loci (QTL) for three traits related to teat number including the total teat number (TTN), the teat number at the left (LTN) and right (RTN) sides in a large scale White Duroc × Erhualian resource population.</p> <p>Results</p> <p>A sex-average linkage map with a total length of 2350.3 cM and an average marker interval of 12.84 cM was constructed. Eleven genome-wide significant QTL for TTN were detected on 8 autosomes including pig chromosomes (SSC) 1, 3, 4, 5, 6, 7, 8 and 12. Six suggestive QTL for this trait were detected on SSC6, 9, 13, 14 and 16. Eight chromosomal regions each on SSC1, 3, 4, 5, 6, 7, 8 and 12 showed significant associations with LTN. These regions were also evidenced as significant QTL for RTN except for those on SSC6 and SSC8. The most significant QTL for the 3 traits were all located on SSC7. Erhualian alleles at most of the identified QTL had positive additive effects except for three QTL on SSC1 and SSC7, at which White Duroc alleles increased teat numbers. On SSC1, 6, 9, 13 and 16, significant dominance effects were observed on TTN, and predominant imprinting effect on TTN was only detected on SSC12.</p> <p>Conclusion</p> <p>The results not only confirmed the QTL regions from previous experiments, but also identified five new QTL for the total teat number in swine. Minor differences between the QTL regions responsible for LTN and RTN were validated. Further fine mapping should be focused on consistently identified regions with small confidence intervals, such as those on SSC1, SSC7 and SSC12.</p

    Problematika Penyelesaian Sengketa Kewenangan Lembaga Negara Oleh Mahkamah Konstitusi

    Full text link
    According to Article 24C verse (1) of the 1945 Constitution, Constitutional court has an authority to examine the dispute among the state institution in which its authority is given by the constitution directly. But there is a certain problem in practice which is related to definition of “state institution” and “authorities are granted the Constitution” in the 1945 Constitution. This condition opens a debate the interpretation in executing the settlement on authority dispute among the institutions. In addition, should be considered the settlement of disputes the authority of institutions, whose authority derived from regulation other than the Constitution Menurut ketentuan Pasal 24C ayat (1) UUD NRI Tahun 1945, penyelesaian sengketa kewenangan lembaga negara yang kewenangannya diberikan oleh UUD merupakan kewenangan Mahkamah Konstitusi. Namun dalam praktiknya, proses penyelesaian sengketa kewenangan lembaga negara menghadapi problem tersendiri seiring tidak adanya batasan ruang lingkup dan definisi “lembaga negara” dan frasa “kewenangannya diberikan UUD” secara pasti dalam UUD NRI Tahun 1945. Situasi ini pada akhirnya menimbulkan multitafsir yang berpotensi mengakibatkan tidak efektifnya penyelesaian sengketa kewenangan lembaga negara di Indonesia. Selain itu, perlu dipikirkan mekanisme penyelesaian sengketa kewenangan lembaga yang kewenangannya bersumber dari peraturan selain UUD

    Identification of loci affecting teat number by genome-wide association studies on three pig populations

    Get PDF
    Objective Three genome-wide association studies (GWAS) and a meta-analysis of GWAS were conducted to explore the genetic mechanisms underlying variation in pig teat number. Methods We performed three GWAS and a meta-analysis for teat number on three pig populations, including a White Duroc×Erhualian F2 resource population (n = 1,743), a Chinese Erhualian pig population (n = 320) and a Chinese Sutai pig population (n = 383). Results We detected 24 single nucleotide polymorphisms (SNPs) that surpassed the genome-wide significant level on Sus Scrofa chromosomes (SSC) 1, 7, and 12 in the F2 resource population, corresponding to four loci for pig teat number. We highlighted vertnin (VRTN) and lysine demethylase 6B (KDM6B) as two interesting candidate genes at the loci on SSC7 and SSC12. No significant associated SNPs were identified in the meta-analysis of GWAS. Conclusion The results verified the complex genetic architecture of pig teat number. The causative variants for teat number may be different in the three population

    A Missense Mutation in PPARD Causes a Major QTL Effect on Ear Size in Pigs

    Get PDF
    Chinese Erhualian is the most prolific pig breed in the world. The breed exhibits exceptionally large and floppy ears. To identify genes underlying this typical feature, we previously performed a genome scan in a large scale White Duroc × Erhualian cross and mapped a major QTL for ear size to a 2-cM region on chromosome 7. We herein performed an identical-by-descent analysis that defined the QTL within a 750-kb region. Historically, the large-ear feature has been selected for the ancient sacrificial culture in Erhualian pigs. By using a selective sweep analysis, we then refined the critical region to a 630-kb interval containing 9 annotated genes. Four of the 9 genes are expressed in ear tissues of piglets. Of the 4 genes, PPARD stood out as the strongest candidate gene for its established role in skin homeostasis, cartilage development, and fat metabolism. No differential expression of PPARD was found in ear tissues at different growth stages between large-eared Erhualian and small-eared Duroc pigs. We further screened coding sequence variants in the PPARD gene and identified only one missense mutation (G32E) in a conserved functionally important domain. The protein-altering mutation showed perfect concordance (100%) with the QTL genotypes of all 19 founder animals segregating in the White Duroc × Erhualian cross and occurred at high frequencies exclusively in Chinese large-eared breeds. Moreover, the mutation is of functional significance; it mediates down-regulation of β-catenin and its target gene expression that is crucial for fat deposition in skin. Furthermore, the mutation was significantly associated with ear size across the experimental cross and diverse outbred populations. A worldwide survey of haplotype diversity revealed that the mutation event is of Chinese origin, likely after domestication. Taken together, we provide evidence that PPARD G32E is the variation underlying this major QTL

    ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs.

    Full text link
    peer reviewedThe composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding to what extend and how host genetics contributes to this variation is paramount yet has proven difficult as few associations have been replicated, particularly in humans2. We herein study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3-Kb deletion in the N-acetyl-galactosaminyl-transferase gene underpinning the ABO blood group in humans. We show that this deletion is a ≥3.5 million years old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut thereby reducing the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of host genotype on the abundance of specific bacteria in the intestine combined with insights in the molecular mechanisms that underpin this association. They pave the way towards identifying the same effect in human rural populations

    A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth.</p> <p>Results</p> <p>Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F<sub>2 </sub>hybrid pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition. We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative splicing patterns, and alternative 3' splicing is the most common type of alternative splicing events in pigs. Cross-tissue comparison revealed that many transcriptional events are tissue-differential and related to important biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene expression revealed interesting candidate genes for complex traits, such as <it>IGF2, CYP1A1, CKM </it>and <it>CES1 </it>for heart weight, hemoglobin, pork pH value and serum cholesterol, respectively.</p> <p>Conclusions</p> <p>This study provides a global view of the complexity of the pig transcriptome, and gives an extensive new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome wide association study and differential gene expression allows us to find important candidate genes for porcine complex traits.</p
    corecore