62 research outputs found

    Cyclin D1 G870A Polymorphism and Risk of Nasopharyngeal Carcinoma: A Meta-Analysis

    Get PDF
    Recently, there have been a number of studies on the association between cyclin D1 G870A polymorphism and nasopharyngeal carcinoma risk. However, the results of previous reports remain controversial and ambiguous. Thus, we performed a meta-analysis to explore more precisely the association between cyclin D1 G870A polymorphism and the risk of nasopharyngeal carcinoma. No significant association was found between cyclin D1 G870A polymorphism and nasopharyngeal carcinoma risk in total population analysis. In the subgroup meta-analysis by ethnicity, a negative association was shown in Caucasian subgroup, and no significant association in any genetic models among Asians was observed. In summary, positive results have been shown on the search for polymorphic variants influencing the risk of NPC. This meta-analysis provides evidence of the association between CCND1 G870A polymorphism and NPC risk, supporting the hypothesis that CCND1 870A allele probably acts as an important NPC protective factor in Caucasians but not in Asians. Since the results of our meta-analysis are preliminary and may be biased by the relatively small number of subjects, they still need to be validated by well-designed studies using larger samples in the future

    Verrucisidinol and Verrucosidinol Acetate, Two Pyrone-Type Polyketides Isolated from a Marine Derived Fungus, Penicillium aurantiogriseum

    Get PDF
    The new secondary metabolites verrucosidinol (1) and its derivative verrucosidinol acetate (2), together with a potent neurotoxin verrucosidin (3), a congener norverrucosidin (4) and a mixture of two known phytotoxic metabolites terrestric acids (5 and 6), were isolated from the marine derived fungus Penicillium aurantiogriseum. Verrucosidinol has a ring-opened ethylene oxide moiety in the polyene α-pyrone skeleton, and verrucosidinol acetate is its acetate derivative. The chemical structures were determined by comparing with literature data and a combination of spectroscopic techniques, including high resolution mass spectrum and two-dimentional nuclear magnetic resonance spectroscopic analysis

    Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation

    Structure revision of the Penicillium alkaloids haenamindole and citreoindole

    Get PDF
    Herein, we describe the isolation of rare alkaloids, haenamindole and citreoindole, from a South China Sea deep-sea fungus, Penicillium citrinum (MF006), and their structure revision based on detailed spectroscopic and C-3 Marfey's analysis. (C) 2016 Elsevier Ltd. All rights reserved

    Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters

    Get PDF
    AbstractMulti-drug resistance of pathogenic microorganisms is becoming a serious threat, particularly to immunocompromised populations. The high mortality of systematic fungal infections necessitates novel antifungal drugs and therapies. Unfortunately, with traditional drug discovery approaches, only echinocandins was approved by FDA as a new class of antifungals in the past two decades. Drug efflux is one of the major contributors to multi-drug resistance, the modulator of drug efflux pumps is considered as one of the keys to conquer multi-drug resistance. In this study, we combined structure-based virtual screening and whole-cell based mechanism study, identified a natural product, beauvericin (BEA) as a drug efflux pump modulator, which can reverse the multi-drug resistant phenotype of Candida albicans by specifically blocking the ATP-binding cassette (ABC) transporters; meantime, BEA alone has fungicidal activity in vitro by elevating intracellular calcium and reactive oxygen species (ROS). It was further demonstrated by histopathological study that BEA synergizes with a sub-therapeutic dose of ketoconazole (KTC) and could cure the murine model of disseminated candidiasis. Toxicity evaluation of BEA, including acute toxicity test, Ames test, and hERG (human ether-à-go-go-related gene) test promised that BEA can be harnessed for treatment of candidiasis, especially the candidiasis caused by ABC overexpressed multi-drug resistant C. albicans

    Establishment and Application of a High Throughput Screening System Targeting the Interaction between HCV Internal Ribosome Entry Site and Human Eukaryotic Translation Initiation Factor 3

    Get PDF
    Viruses are intracellular obligate parasites and the host cellular machinery is usually recruited for their replication. Human eukaryotic translation initiation factor 3 (eIF3) could be directly recruited by the hepatitis C virus (HCV) internal ribosome entry site (IRES) to promote the translation of viral proteins. In this study, we establish a fluorescence polarization (FP) based high throughput screening (HTS) system targeting the interaction between HCV IRES and eIF3. By screening a total of 894 compounds with this HTS system, two compounds (Mucl39526 and NP39) are found to disturb the interaction between HCV IRES and eIF3. And these two compounds are further demonstrated to inhibit the HCV IRES-dependent translation in vitro. Thus, this HTS system is functional to screen the potential HCV replication inhibitors targeting human eIF3, which is helpful to overcome the problem of viral resistance. Surprisingly, one compound HP-3, a kind of oxytocin antagonist, is discovered to significantly enhance the interaction between HCV IRES and eIF3 by this HTS system. HP-3 is demonstrated to directly interact with HCV IRES and promote the HCV IRES-dependent translation both in vitro and in vivo, which strongly suggests that HP-3 has potentials to promote HCV replication. Therefore, this HTS system is also useful to screen the potential HCV replication enhancers, which is meaningful for understanding the viral replication and screening novel antiviral drugs. To our knowledge, this is the first HTS system targeting the interaction between eIF3 and HCV IRES, which could be applied to screen both potential HCV replication inhibitors and enhancers

    Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    No full text
    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections

    An adaptive many-objective evolutionary algorithm based on decomposition with two archives and entropy trigger

    No full text
    This paper proposes two novel mechanisms to improve the performance of many-objective evolutionary algorithms based on Chebyshev scalarization. One mechanism improves the efficiency and effectiveness of the adaptation of the descent directions in criteria space, while the other ensures that extreme solutions are preserved. Weight adaptation via WS-transformation has shown promising results but its performance is dependent on the choice of the start of the adaptation process. In order to overcome this limitation, in this paper we propose an efficient entropy-based trigger with a fast calculation of the entropy that scales favourably with the number of dimensions. The novel entropy-based method is complemented by a dual-archiving mechanism that preserves extreme solutions. The dual-archiving strategy mitigates the possibility to discard those critical individuals whose loss affects the whole evolutionary process. The new algorithm proposed in this paper (called aMOEA/D-2A-ET), was compared against a set of state-of-the-art MOEAs and showed competitive performance
    • …
    corecore