1,209 research outputs found

    The Experimental And Simulation Analysis Of The Transmission Loss Of The Muffler In The Rotary Compressor

    Get PDF
    The discharge muffler of the rotary compressor is used to reduce the discharge noise produced by pressure pulsations. In order to obtain the transmission loss of discharge muffler, four microphone experimental devices used to measure the transmission loss of the muffler is established. The device is based on the transfer function method on the assumption that there is only plane wave in the tube, thus the measurement range of the device is discussed at the same time. Then the transmission loss of a contraction chamber is measured and calculated theoretically and the validity of the experimental device is verified through comparing the measurement and theoretical result. At last, a few various mufflers are measured using the experimental device and simulated by finite element method (FEM). The transmission loss of mufflers in the air is obtained and the experimental and simulation results are verified by each other

    The Mechanism Discuss of Periodic Sound in Rolling Piston Compressor under Low Operating Frequency in Air-conditioner System

    Get PDF
    With the popularization of the inverter-driven air-conditioner and the requirement of comfort and energy saving, the operating frequency of inverter-driven air-conditioner is lower and lower, even to 1Hz. But when the air-conditioner operates under the frequency of 10Hz, a periodic sound will appear in the air-conditioner outdoor unit, which should be researched and solved. According to the experiment test and theoretical analysis, it is found that the periodic sound is the excited resonance when the valve opens. The resonator is composed by the discharge port of top-flange and discharge cavity which is made up by cylinder, roller, top-flange and bottom-flange. In one cycle the characteristic of the periodic sound is that the sound will be only taken place when the valve opens and the frequency of the sound will be higher and higher with the crank angle increasing. According to the experimental testing about different type compressor and air-conditioner outdoor unit, it is found that this sound exists in every kinds of rolling piston compressor. Using proper muffler and increasing the thickness of the valve could both reduce this periodic sound

    Research On Low Frequency Vibration Of Rotary Compressor

    Get PDF
    The abnormal noise of an outdoor domestic air-conditioner operating at low speed is experimentally analyzed. The structure-borne noise which passes through the mounting system is confirmed to be the main source of the abnormal noise due to the large low frequency vibration on compressor foot. Then the characteristic of low frequency vibration of rotary compressor including the dynamic model, exciting forces and dynamic response is researched. Based on this, mounting system including compressor foot and rubber grommet is optimized to solve this problem, more than 8dB reduced

    Coevolutionary Diagenesis in Tight Sandstone and Shale Reservoirs within Lacustrine-Delta Systems: A Case Study from the Lianggaoshan Formation in the Eastern Sichuan Basin, Southwest China

    Get PDF
    Tight sandstone and shale oil and gas are the key targets of unconventional oil and gas exploration in the lake-delta sedimentary systems of China. Understanding the coevolutionary diagenesis of sandstone and shale reservoirs is crucial for the prediction of reservoir quality, ahead of drilling, in such systems. Thin-section description, scanning electron microscopy (SEM), X-ray diffraction (XRD), fluid inclusion analysis, porosity and permeability tests, high-pressure mercury intrusion (HPMI) measurements and nuclear magnetic resonance tests (NMR) were used to reveal the coevolutionary diagenetic mechanisms of a sandstone and shale reservoir in the Lianggaoshan Formation of the Eastern Sichuan Basin, China. The thermally mature, organic-matter-rich, dark shale of layer3 is the most important source rock within the Lianggaoshan Formation. It started to generate abundant organic acids at the early stage of mesodiagenesis and produced abundant hydrocarbons in the early Cretaceous. Porewater with high concentrations of Ca2+ and CO32− entered the sandstone reservoir from dark shale as the shale was compacted during burial. Potassium feldspar dissolution at the boundary of the sandstone was more pervasive than at the center of the sandstone. The K+ released by potassium feldspar dissolution migrated from the sandstone into mudstone. Grain-rimming chlorite coats occurred mainly in the center of the sandstone. Some silica exported from the shale was imported by the sandstone boundary and precipitated close to the shale/sandstone boundary. Some intergranular dissolution pores and intercrystal pores were formed in the shale due to dissolution during the early stages of mesodiagenesis. Chlorite coats, which precipitated during eodiagenesis, were beneficial to the protection of primary pore space in the sandstone. Calcite cement, which preferentially precipitated at the boundary of sandstone, was not conducive to reservoir development. Dissolution mainly occurred at the early stage of mesodiagenesis due to organic acids derived from the dark shale. Calcite cement could also protect some primary pores from compaction and release pore space following dissolution. The porosity of sandstone and shale was mainly controlled by the thickness of sandstone and dark shale

    Search for the decay J/ψ→γ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)→π+π−J/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×10−7\times 10^{-7} at the 90\% confidence level

    First observations of hc→h_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)→π0hc\psi(3686) \to \pi^0 h_c. Three of them, hc→ppˉπ+π−h_c \to p \bar{p} \pi^+ \pi^-, π+π−π0\pi^+ \pi^- \pi^0, and 2(π+π−)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×10−3(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×10−3(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×10−3(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc→3(π+π−)π0)<8.7×10−3B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hc→K+K−π+π−)<5.8×10−4B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Observation of ηc→ωω\eta_c\to\omega\omega in J/ψ→γωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψ→γωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηc→ωω)=(2.88±0.10±0.46±0.68)×10−3\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψ→γηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1) M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1) \Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure
    • …
    corecore