32 research outputs found

    An overview on nonlinear porous flow in low permeability porous media

    Get PDF
    AbstractThis paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir, is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments

    E2E Segmentation in a Two-Pass Cascaded Encoder ASR Model

    Full text link
    We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder

    Antidiabetic Activity of a Flavonoid-Rich Extract From Sophora davidii (Franch.) Skeels in KK-Ay Mice via Activation of AMP-Activated Protein Kinase

    Get PDF
    The present study was undertaken to investigate the hypoglycemic activity and potential mechanisms of action of a flavonoid-rich extract from Sophora davidii (Franch.) Skeels (SD-FRE) through in vitro and in vivo studies. Four main flavonoids of SD-FRE namely apigenin, maackiain, leachianone A and leachianone B were purified and identified. In vitro, SD-FRE significantly promoted the translocation and expression of glucose transporter 4 (GLUT4) in L6 cells, which was significantly inhibited by Compound C (AMPK inhibitor), but not by Wortmannin (PI3K inhibitor) or Gö6983 (PKC inhibitor). These results indicated that SD-FRE enhanced GLUT4 expression and translocation to the plasma membrane via the AMPK pathway and finally resulted in an increase of glucose uptake. In vivo, using a spontaneously type 2 diabetic model, KK-Ay mice received intragastric administration of SD-FRE for 4 weeks. As a consequence, SD-FRE significantly alleviated the hyperglycemia, glucose intolerance, insulin resistance and hyperlipidemia in these mice. Hepatic steatosis, islet hypertrophy and larger adipocyte size were observed in KK-Ay mice. However, these pathological changes were effectively relieved by SD-FRE treatment. SD-FRE promoted GLUT4 expression and activated AMPK phosphorylation in insulin target tissues (muscle, adipose tissue and liver) of KK-Ay mice, thus facilitating glucose utilization to ameliorate insulin resistance. Regulation of ACC phosphorylation and PPARγ were also involved in the antidiabetic effects of SD-FRE. Taken together, these findings indicated that SD-FRE has the potential to alleviate type 2 diabetes

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.178∼4.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+→K+η′)=(2.68±0.17±0.17±0.08)×10−3\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+→η′π+)=(37.8±0.4±2.1±1.2)×10−3\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+→K+η)=(1.62±0.10±0.03±0.05)×10−3\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+→ηπ+)=(17.41±0.18±0.27±0.54)×10−3\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+→K+KS0)=(15.02±0.10±0.27±0.47)×10−3\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+→KS0π+)=(1.109±0.034±0.023±0.035)×10−3\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+→K+π0)=(0.748±0.049±0.018±0.023)×10−3\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+→K+K−π+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    Essential oil from Euphorbia esula inhibits proliferation and induces apoptosis in HepG2 cells via mitochondrial dysfunction

    Get PDF
    Hepatocellular carcinoma is one of the most prevalent malignancies and a leading cause of cancer-related mortality worldwide. However, the therapies to prevent hepatocellular carcinoma are still limited and the emergence of drug resistance leads to the development of new anti-cancer drugs and combinational chemotherapy regimens. Our study was aimed to explore the anticancer effects of the essential oil extract (EEEO) from Euphorbia esula which has been widely used in traditional Chinese folk medicine and possessed potential cytotoxic effects in several human tumor cells. However, the mechanisms of EEEOinduced anti-proliferation and apoptosis have not been completely elucidated. In this study, EEEO was prepared by hydro-distillation and the main chemical component of EEEO was identified by GC-MS. HepG2 cells were treated with EEEO in vitro and then evaluated with respect to proliferation, apoptosis, and levels of reactive oxygen species (ROS) and apoptotic proteins. Our studies showed that EEEO decreased cell viability, elevated ROS levels, and induced apoptosis of HepG2 cells in a concentrationand time-dependent manner. Furthermore, Bcl-2 was down-regulated, while Bax was up-regulated in HepG2 after EEEO treatment. These results suggest that EEEO induced apoptosis of HepG2 cells and indicate that this apoptosis might be mediated by the mitochondrial pathway

    Research on the Rationalization of Talents in the New Era Based on the Analysis of the Characteristics of Chinese Academicians

    No full text
    [Purpose/significance] Academicians are the main and elite force to promote the development of science and technology in China, the research on its growth rule and development history has great significance for the discovery and cultivation of talents in China. [Method/ process] By the CV analysis method, this paper comprehensively collected information on academicians, and carried out the quantitative research on the temporal and spatial characteristics, academic structure characteristics of the academician group. [Result/conclusion] This paper explores the basic characteristics and the factors affecting the achievement of academician group. Then, it puts forward the rationalization suggestions for talent training in the new era

    The Radial Growth of <i>Juniperus squamata</i> Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century

    No full text
    In order to explore the impact of climate change on the ecosystem at high altitudes, dendroclimatology was used to study the response of radial growth of Juniperus squamata Buch.-Ham. ex D.Don to the rapid warming in Nangqian County over the past 60 years, and a tree-ring width chronology for 115 years was established. (1) Meteorological data showed that the temperature in Nangqian County of the Tibetan Plateau has increased continuously during the past 60 years, and the minimum temperature has had the most significant change (0.63 °C/10a), especially between 2000–2019 (0.12 °C/a). Over the same time period precipitation has not changed significantly (0.94 mm/a, p > 0.10). The standard chronology was used to reconstruct the mean temperature series from July to September in Nangqian meteorological station during the past 115 years (1905–2019). The explained variance of the reconstructed equation was 42.8% (40.8%, after adjusting for degrees of freedom). The reconstructed temperature series can be roughly divided into two stages: from 1905 to 1999, the temperature fluctuated around the average value, 12.10 °C, and from 2000 to 2019, the temperature showed a significant upward trend. (2) The analysis of the climate-tree growth relationship indicated that the response of radial growth of Juniperus squamata to temperature was significantly stronger than the response to precipitation; especially in the last 20 years, when the radial growth of Juniperus squamata was positively correlated with temperature (p Juniperus squamata and minimum temperature was more significant. (3) Under the background of climate warming, the radial growth trend of Juniperus squamata in Nangqian county was consistent with temperature changes. Particularly in the past 20 years, the radial growth of Juniperus squamata showed a significantly increased trend and entered a rapid growth period

    The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    No full text
    Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE) formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI) formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures
    corecore