120,454 research outputs found

    Solutions of special asymptotics to the Einstein constraint equations

    Full text link
    We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear in Class. Quantum Gra

    Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC

    Get PDF
    Microstructure of sintered nanocrystalline SiC is studied by x-ray line profile analysis and transmission electron microscopy. The lattice defect structure and the crystallite size are determined as a function of pressure between 2 and 5.5 GPa for different sintering temperatures in the range from 1400 to 1800 degrees C. At a constant sintering temperature, the increase of pressure promotes crystallite growth. At 1800 degrees C when the pressure reaches 8 GPa, the increase of the crystallite size is impeded. The grain growth during sintering is accompanied by a decrease in the population of planar faults and an increase in the density of dislocations. A critical crystallite size above which dislocations are more abundant than planar defects is suggested

    Observation of strong electron dephasing in disordered Cu93_{93}Ge4_4Au3_3 thin films

    Full text link
    We report the observation of strong electron dephasing in a series of disordered Cu93_{93}Ge4_4Au3_3 thin films. A very short electron dephasing time possessing very weak temperature dependence around 6 K, followed by an upturn with further decrease in temperature below 4 K, is found. The upturn is progressively more pronounced in more disordered samples. Moreover, a lnTT dependent, but high-magnetic-field-insensitive, resistance rise persisting from above 10 K down to 30 mK is observed in the films. These results suggest a nonmagnetic dephasing process which is stronger than any known mechanism and may originate from the coupling of conduction electrons to dynamic defects.Comment: to appear in Phys. Rev. Let

    Momentum Distribution for Bosons with Positive Scattering Length in a Trap

    Full text link
    The coordinate-momentum double distribution function ρ(r,p)d3rd3p\rho ({\bf r}, {\bf p}) d^{3}rd^{3}p is calculated in the local density approximation for bosons with positive scattering length aa in a trap. The calculation is valid to the first order of aa. To clarify the meaning of the result, it is compared for a special case with the double distribution function ρwd3rd3p\rho_{w}d^{3} rd^{3}p of Wigner.Comment: Latex fil

    Magnetism and structure of LixCoO2 and comparison to NaxCoO2

    Full text link
    The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0 are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and 1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling is observed, increasing in strength as more Co4+ is introduced. At an x value of about 0.65, the temperature-independent contribution to the magnetic susceptibility and the electronic contribution to the specific heat are largest. Neutron diffraction analysis reveals that the lithium oxide layer expands perpendicular to the basal plane and the Li ions displace from their ideal octahedral sites with decreasing x. A comparison of the structures of the NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially with alkali content in the former but is relatively rigid in the latter. Further, the CoO6 octahedra in LixCoO2 are less distorted than those in NaxCoO2. We postulate that these structural differences strongly influence the physical properties in the two systems

    Periodic substorm activity in the geomagnetic tail

    Get PDF
    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate

    Gamma-Ray Burst Afterglows from Realistic Fireballs

    Get PDF
    A GRB afterglow has been commonly thought to be due to continuous deceleration of a postburst fireball. Many analytical models have made simplifications for deceleration dynamics of the fireball and its radiation property, although they are successful at explaining the overall features of the observed afterglows. We here propose a model for a GRB afterglow in which the evolution of a postburst fireball is in an intermediate case between the adiabatic and highly radiative expansion. In our model, the afterglow is both due to the contribution of the adiabatic electrons behind the external blastwave of the fireball and due to the contribution of the radiative electrons. In addition, this model can describe evolution of the fireball from the extremely relativistic phase to the non-relativistic phase. Our calculations show that the fireball will go to the adiabatic expansion phase after about a day if the accelerated electrons are assumed to occupy the total internal energy. In all cases considered, the fireball will go to the mildly relativistic phase about 10410^4 seconds later, and to the non-relativistic phase after several days. These results imply that the relativistic adiabatic model cannot describe the deceleration dynamics of the several-days-later fireball. The comparison of the calculated light curves with the observed results at late times may imply the presence of impulsive events or energy injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap
    corecore