10,453 research outputs found

    Breakpoint lead-lag analysis of the last deglacial climate change andatmospheric CO2 concentration on global and hemispheric scales

    Get PDF
    Antarctic ice core records show that climate change and atmospheric CO2 concentration (aCO2) are closely related over the past 800 thousand years. However, the interpretation of their sequential, and hence the causal relationship has long been controversial. In this study, we revisit this long-standing scientific issue based on 88 well-dated high-resolution climate proxy records derived from ice cores, marine deposits, and stalagmites. We composite global and hemispheric stacks of the last deglacial climate index (DCI) using a normalization scheme instead of a more conventional area-weighting and mixing scheme to enable a better detection of temporal variations. Rampfit and Breakfit techniques are employed to detect the trend transitions in each composited DCI series and in the recently constructed centennial-scale aCO2 over the period from 22 to 9 thousand years before present. We detect a clear lead of DCI change over aCO2 variation on both global and hemispheric scales at the early stage of the deglaciation, suggesting that the variation of aCO2 is an internal feedback in Earth&#39;s climate system rather than an initial trigger of the last deglacial warming. During the periods of the B&oslash;lling-Aller&oslash;d and the Younger Dryas, the climate system appeared to have been constrained by a fast coupling mechanism between climate change and aCO2 with no obvious asynchrony. The northern and southern hemispheric DCI stacks exhibit a seesawing pattern that can be linked to the influences of Atlantic meridional overturning circulation (AMOC) strength, revealing an important role of AMOC in regulating the global climate in the course of the last deglaciation.<br /

    Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    Get PDF
    This work explains the occurrence of transformation-induced plasticity via stress-assisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial deformation-induced microstructure can be dominated by parallel lamellae of epsilon martensite or mechanical twinning, which cannot efficiently provide nucleation sites for strain-induced martensite. Hence, alpha martensite nucleation occurs independently by a stress-assisted process that enhances transformation-induced plasticity in ultrafine-grained austenite. This metallurgical principle was validated experimentally by using a combination of transmission Kikuchi diffraction mapping, transmission electron microscopy, and atom probe microscopy, and demonstrated theoretically by the thermodynamics model of stress-assisted martensite.The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility (ammrf.org.au) node at Sydney Microscopy & Microanalysis, at the University of Sydney.This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1359645414006958

    The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity

    Full text link
    We study the entanglement dynamics of the two two-level atoms coupling with a single-mode polarized cavity field after incorporating the atomic centers of mass classical harmonic vibrations with micro amplitudes and low frequencies. We propose a quantitative vibrant factor to modify the concurrence of the two atoms states. When the vibrant frequencies are very low, we obtain that: (i) the factor depends on the relative vibrant displacements and the initial phases rather than the absolute amplitudes, and reduces the concurrence to three orders of magnitude; (ii) the concurrence increases with the increase of the initial phases; (iii) the frequency of the harmonic vibration can be obtained by measuring the maximal value of the concurrence during a small time. These results indicate that even the extremely weak classical harmonic vibrations can be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure

    Large enhancement of the thermopower in Nax_xCoO2_2 at high Na doping

    Full text link
    Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate NaxCoO2\rm Na_xCoO_2 displays several interesting electronic phases as xx is varied including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, NaxCoO2\rm Na_xCoO_2 displays moderately large thermopower SS and conductivity σ\sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit ZZ was found to be small at this composition (0.6<x<<x<0.7). Here we report that, in the poorly-explored high-doping region x>x>0.75, SS undergoes an even steeper enhancement. At the critical doping xpx_p\sim 0.85, ZZ (at 80 K) reaches values \sim40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.Comment: 6 pages, 7 figure

    Strained graphene structures: from valleytronics to pressure sensing

    Full text link
    Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo
    corecore