2,810 research outputs found

    The behaviour and effects of beam-end buckling in fire using a component-based method

    Get PDF
    A combination of beam-web shear buckling and flange buckling at the ends of steel beams is very commonly observed during full-scale fire tests. This can affect the behaviour of the steel beams, as well as on their adjacent connections, under fire conditions. This phenomenon has not previously been sufficiently investigated and cannot be simulated in high-temperature global frame analysis, which could potentially lead to unrealistic results being used in structural fire engineering design. In this research, a component-based beam-end buckling element has for the first time been created for Class 1 and 2 beams. The beam-end buckling element is composed of nonlinear springs, respectively representing the buckling of beam flange and web, also considering the interaction between these two buckling phenomena. Each spring is able to deal with loading-unloading-reloading force-deformation paths. A significant challenge is to enable the flange buckling spring to deal with post-buckling deformation reversal. The buckling element has been implemented into the structural fire engineering frame analysis software Vulcan, to be used adjacent to existing connection elements in frame modelling. The buckling element has been verified against ABAQUS finite element modelling on isolated beams. It is shown that the newly created component-based buckling element is able to simulate the effects of beam-end shear buckling in the web and local buckling of the bottom-flange, with satisfactory accuracy. The influence of the buckling element on the bolt-row force distribution within the adjacent connection element has been investigated. Analyses using isolated beams indicate that the implementation of the buckling element considerably improves the prediction of connection force resultants. A general observation from numerical studies with and without the buckling element is that beam-end buckling seems to reduce the connection component forces generated at elevated temperatures

    On the CR transversality of holomorphic maps into hyperquadrics

    Full text link
    Let MℓM_\ell be a smooth Levi-nondegenerate hypersurface of signature ℓ\ell in Cn\mathbf C^n with n≄3 n\ge 3, and write HℓNH_\ell^N for the standard hyperquadric of the same signature in CN\mathbf C^N with N−n<n−12N-n< \frac{n-1}{2}. Let FF be a holomorphic map sending MℓM_\ell into HℓNH_\ell^N. Assume FF does not send a neighborhood of MℓM_\ell in Cn\mathbf C^n into HℓNH_\ell^N. We show that FF is necessarily CR transversal to MℓM_\ell at any point. Equivalently, we show that FF is a local CR embedding from MℓM_\ell into HℓNH_\ell^N.Comment: To appear in Abel Symposia, dedicated to Professor Yum-Tong Siu on the occasion of his 70th birthda

    Evolution of asexual and sexual reproduction in the aspergilli

    Get PDF
    Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative ‘asexual’ species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.National Natural Science Foundation of China 31601446National Research Foundation of Korea 2016010945Intelligent Synthetic Biology Center of Global Frontier Projects 2015M3A6A8065838Biotechnology and Biological Sciences Research CouncilGovernment of IraqMinisterio de Economía y Competitividad BIO2015-67148-

    Formal and finite order equivalences

    Full text link
    We show that two families of germs of real-analytic subsets in CnC^{n} are formally equivalent if and only if they are equivalent of any finite order. We further apply the same technique to obtain analogous statements for equivalences of real-analytic self-maps and vector fields under conjugations. On the other hand, we provide an example of two sets of germs of smooth curves that are equivalent of any finite order but not formally equivalent

    Obstructions to embeddability into hyperquadrics and explicit examples

    Full text link
    We give series of explicit examples of Levi-nondegenerate real-analytic hypersurfaces in complex spaces that are not transversally holomorphically embeddable into hyperquadrics of any dimension. For this, we construct invariants attached to a given hypersurface that serve as obstructions to embeddability. We further study the embeddability problem for real-analytic submanifolds of higher codimension and answer a question by Forstneri\v{c}.Comment: Revised version, appendix and references adde

    Component-based modelling of a novel ductile steel connection

    Get PDF
    To enhance the robustness of connections in fire, the improved design version of a novel ductile connection has been proposed. Performance of the improved design version of novel connection has been compared with that of the previous design version using a sub-frame model. The comparison results show that the improved version of novel connection further enhances its ductility. Five case studies have been carried out, in which the novel connections are applied to sub-frames with different beam spans. Results show that the axial forces generated in the beams with novel connections are significantly reduced compared with those of the beams with rigid connections. The analytical models for the web cleat component of the novel connection and the WCSC component, which considers the semi-cylindrical section and the web-cleat as a whole to deform, have been developed based on simple plastic theory. Then two schemes of component based model have been proposed for the novel ductile connection and loading and unloading behaviour have been incorporated into individual component. Result curves of the two schemes of component-based model have been compared and validated against Abaqus simulations and experiments. Finally, the proposed component-based model has been applied to two simple examples to illustrate how different spring rows work in the process of connection deformation

    B→KB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the B→KB\to K transition form factor F+,0B→K(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΚB\Psi_B and ιˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΚB\Psi_B and ιˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Κp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0B→K(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0B→K(0)/F+,0B→π(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let
    • 

    corecore