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The Behaviour and Effects of Beam-End Buckling in Fire Using a 

Component-Based Method  

Guan Quan, Shan-Shan Huang, Ian Burgess 

University of Sheffield, Department of Civil and Structural Engineering, UK  

Abstract 

A combination of beam-web shear buckling and flange buckling at the ends of steel 

beams is very commonly observed during full-scale fire tests. This can affect the 

behaviour of the steel beams, as well as on their adjacent connections, under fire 

conditions. This phenomenon has not previously been sufficiently investigated and 

cannot be simulated in high-temperature global frame analysis, which could 

potentially lead to unrealistic results being used in structural fire engineering design. 

In this research, a component-based beam-end buckling element has for the first 

time been created for Class 1 and 2 beams. The beam-end buckling element is 

composed of nonlinear springs, respectively representing the buckling of beam 

flange and web, also considering the interaction between these two buckling 

phenomena. Each spring is able to deal with loading-unloading-reloading force-

deformation paths. A significant challenge is to enable the flange buckling spring to 

deal with post-buckling deformation reversal. The buckling element has been 

implemented into the structural fire engineering frame analysis software Vulcan, to 

be used adjacent to existing connection elements in frame modelling.  

The buckling element has been verified against ABAQUS finite element modelling on 

isolated beams. It is shown that the newly created component-based buckling 

element is able to simulate the effects of beam-end shear buckling in the web and 



  

local buckling of the bottom-flange, with satisfactory accuracy. The influence of the 

buckling element on the bolt-row force distribution within the adjacent connection 

element has been investigated. Analyses using isolated beams indicate that the 

implementation of the buckling element considerably improves the prediction of 

connection force resultants. A general observation from numerical studies with and 

without the buckling element is that beam-end buckling seems to reduce the 

connection component forces generated at elevated temperatures. 

 

Keywords: Post-Buckling Behaviour; Steel Beam; Component-Based Model; 

Connection; Fire.  



  
Notation: 

 

b flange width 

c half flange width 

d beam web depth 

DB spring deformation of Node B 

DCREF spring deformation of the Reference Point 

DCREF1 spring deformation of the Reference Point at temperature  T1 

DINTER spring deformation of the Intersection Point 

DINTER1 spring deformation of the Intersection Point  at temperature  T1 

DINTER2 spring deformation of the Intersection Point  at temperature  T2 

Dn spring deformation of Node Pn 

Dn-1 spring deformation of Node Pn-1 

Dx real spring deformation in an arbitrary iteration  

Fx internal horizontal force of the buckling element  

FB bottom spring force 

FINTER1 spring force of the Intersection Point  at temperature  T1 

FINTER2 spring force of the Intersection Point  at temperature  T2 

FR spring yield strength  

FS shear spring force 

FT top spring force 

FUB internal force of the unbuckled spring 

Fy internal vertical force of the buckling element 

kE ƌĞĚƵĐƚŝŽŶ ĨĂĐƚŽƌ ĨŽƌ ǇŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ Ăƚ ĞůĞǀĂƚĞĚ ƚĞŵƉĞƌĂƚƵƌĞƐ 

KIC
 

initial elastic stiffness of the compression spring 

KT1
 

initial elastic stiffness of the compression spring at temperature T1 

KT2
 initial elastic stiffness of the compression spring at temperature T2 

ky reduction factor for yield stress at elevated temperatures 

K1 slope of the line segment between Point B and Point Pn-1 

K2 slope of the line segment between Point  Pn-1 and Point Pn-2 

l beam length 

 flange-buckling wavelength length 

M applied bending moment 

Mn moment resistance of Point  Pn 

Mn-1 moment resistance of Point  Pn-1 

MP plastic moment resistance of the buckling element 

Mx moment resistance  in an arbitrary iteration   

Mxy in-plane elemental moment  

tf thickness of the flange 

pL



  

tw thickness of the beam web 

ĮT thermal elongation coefficient  

∆T top spring deformation 

∆B bottom spring/buckling spring deformation 

∆2y vertical displacement of Nodal 2 

∆1x horizontal displacement of Nodal 1 

∆1y vertical displacement of Nodal 1 

∆2x horizontal displacement of Nodal 2 

ș relative rotation of the two nodes of the buckling element 

ș1 rotation of Nodal 1 

ș2 rotation of Nodal 2 

șB relative rotation of the two nodes at the end of the plateau stage 

șR relative rotation of the two nodes at the end of the pre-buckling stage 

șn relative rotation of the two nodes at Point  Pn 

șn-1 relative rotation of the two nodes at Point  Pn-1 

ıy,ș yield strength of steel at elevated temperatures 



  

1. Introduction 

Significant developments [1, 2] have been made in investigating the behaviour of 

steel structures under fire conditions in the last two decades. The Cardington full-

scale fire tests [3, 4] demonstrated that the behaviour of a continuous composite 

structure can be completely different from the behaviour of isolated members seen 

in conventional standard fire testing. Structural behaviour in fire can be highly 

nonlinear and complex, and perhaps the most important goal of fire design is to 

prevent progressive collapse of the whole building. Therefore, designers are 

becoming increasingly aware of the importance of performance-based design, which 

treats the structure integrally, and attempts to sufficiently consider the interactions 

between different parts of a structure in analyses which contribute to the design 

process. Due to the high cost of full-scale fire testing and the complexity of the 

interactions involved, it has become essential to develop full-structure 

computational simulation tools in order to enable performance-based design. 

Detailed finite element modelling using software such as ABAQUS [5] and ANSYS [6] 

can provide sufficient accuracy, but the creation of structural models is time-

consuming and the analysis can be computationally demanding; this approach is 

therefore undesirable for practical full-structure analysis, especially when detailed 

semi-rigid connection models have to be generated.  

The software Vulcan [7] was developed by the Fire Engineering Research Group at 

the University of Sheffield. Vulcan allows engineers to conduct three-dimensional 

frame analysis and structural robustness assessments under fire conditions. A variety 

of element types (beam-column, slab, shear connector and connections) has already 

been implemented. The development of connection elements [8-10] in Vulcan has 



  

been based on a ͞component-based͟ representation instead of modelling the details 

of the connection using solid elements. In the component-based method a 

connection is considered as an assembly of nonlinear springs, each of which has its 

individual characteristics. This simplified model is able to represent the key 

behaviour of certain connection elements to an acceptable accuracy, but adds very 

few degrees of freedom to the structural model, which makes the computation 

considerably more efficient [8]. Recently, Khalaf et al. [11] have created a model for 

predicting the bond-slip between concrete and steel reinforcing bars at elevated 

temperatures in Vulcan.  

It has been observed that both shear buckling of beam webs and beam bottom-

flange buckling (Fig. 1), near the ends of steel beams, are very prevalent under fire 

conditions. These phenomena can affect particularly the internal forces in adjacent 

connections and the overall deflection of the beam, and may therefore influence the 

fire resistance of the assembled structure. However, there has not been sufficient 

research investigating the beam-end local buckling behaviour of Class 1 to 2 beams 

at high temperatures. On the one hand, there has been no theoretical model which 

can represent the plastic post-buckling behaviour of stocky (Classes 1 and 2) beams 

at elevated temperatures. On the other hand, although detailed modelling using 

commercial FEA packages such as ABAQUS or ANSYS can predict and follow the 

beam-end buckling phenomena, this is computationally very demanding and 

becomes unfeasible when global frame analysis is required in the context of practical 

performance-based structural fire engineering design. It has therefore become 

essential to develop a simplified model which can be integrated into global analysis, 

in order to simulate the beam-end buckling phenomena sufficiently accurately 



  

within an acceptable time-period, given that this includes both the creation of a 

model and the actual runtime. In this study, this has been achieved by developing a 

new buckling element and integrating it into Vulcan.  

Previous work [12] conducted by the authors has led to the development of an 

analytical model which can consider the combination and interaction of flange 

buckling and beam-web shear buckling. Further parametric studies [12, 13] have 

indicated that this model is sufficiently accurate to reflect the most important 

aspects of the buckling zones in the vicinity of beam-to-column-face connections at 

elevated temperatures. In this study, a component-based model of the buckling zone 

has been created on the basis of this analytical model. Each nonlinear spring in the 

buckling element is able to deal with the reversal of spring deformation, to simulate 

strain reversal, which very often happens within a heated structure and must 

therefore be considered during modelling. The component-based buckling element 

has been implemented into Vulcan. It has been verified against ABAQUS modelling 

on isolated beams. The influence of the buckling element on the bolt-row force 

redistribution within the connection has then been investigated.  

2. Creation of the component-based model   

According to the analytical model, the force-deflection characteristics of the buckling 

element can be divided into three stages, described as pre-buckling, plateau and 

post-buckling. In the pre-buckling and plateau stages, the buckling element performs 

as an ordinary beam element. In the post-buckling stage, the deflection of the 

buckling zone is the sum of the deflection due to beam-web shear buckling and that 

caused by bottom-flange buckling. The bottom-flange buckling causes an additional 

rotation of the whole beam-end about its support (due mainly to local shortening of 



  

the bottom flange in buckling), as shown in Fig. 2 (a). It is assumed that the centre of 

rotation is at the top corner of the beam-end (Point A in Fig. 2 (a)), since the 

resistance of the bottom flange decreases after buckling. Beam-web shear buckling 

can cause transverse drift of the shear panel, as shown in Fig. 2 (b). Therefore, the 

combined effect of flange buckling and beam-web shear buckling on the overall 

vertical deflection of the beam is as illustrated in Fig. 2 (c).  

The component-based buckling element is illustrated in Fig. 3. The flange-buckling 

element is composed of four nonlinear horizontal springs at the flange positions. 

Two springs, one to act in tension and one to act in compression, are located at each 

flange, representing its resistance. For the set of springs at either location, only one 

spring will be activated at any instant, depending on the sense of the spring force. 

The beam-web shear buckling is represented by the shear-buckling component (the 

vertical spring of the buckling element in Fig. 3). The length of the component-based 

buckling element is calculated according to Eq. (1) on the basis of elastic buckling 

theory [14], which has been modified to consider the effects of temperature and 

steel grade. In most fire tests only one shear-buckling wave has been observed, and 

this is usually aligned at around 45ࣙ to the horizontal. Therefore, the shear-buckling 

panel is not usually longer than the beam depth d, and the flange buckling wave lies 

between the two plastic hinges (Points B and C in Fig. 2 (b)) on the bottom flange. 

Hence, it has been assumed that the flange-buckling wavelength pL , calculated by 

Eq. (1), is limited not to be longer than the beam depth d . 

     3/41/4

,

275
2 2 0.713 / / / (0.7 ) / 2p f w E y

y

L c d b t t k k d





     (1) 



  

In the calculation procedure, the two nodal displacements of the component-based 

buckling element can be calculated by accumulating the nodal displacements from 

each iteration based on force equilibrium. The deformation of each spring can be 

related to the nodal displacements using the equations below: 

2 1 2 1- / 2 ( - )T x xd     ′ ″  (2) 

2 1 2 1- - / 2 ( - )B x xd     ′ ″  (3) 

2 1-S y y     (4) 

According to each spring͛Ɛ deformation and stiffness, the spring force can be 

calculated. The elemental internal forces can be related to the individual spring force 

according to Eq. (5): 

x T BF F F   (5) 

y SF F  (6) 

y ( ) / 2x T BM F F d   (7) 

As the element is two-dimensional at present, the out-of-plane elemental stiffnesses 

are all assumed to be infinitely large. The derivation of the individual spring stiffness 

and force according to its deformation in all the heating/loading stages will be 

introduced in Section 3.  

3. Loading and unloading paths of the buckling element 

During the course of a fire, the beam-end buckling zones can experience complex 

combinations of internal forces caused by high material nonlinearity and expansions 

due to temperature variation, interacting with end-restraint conditions. In the model, 

these forces will be resisted by the horizontal springs at the flanges. These springs 

can be subject to either compression or tension at different stages of  

loading/heating. For example, the bottom spring may be in compression during the 



  

initial heating phase, and in tension in the high-temperature catenary stage. 

Therefore, it is essential to establish a robust loading-unloading-reloading approach 

to deal with deformation reversal at both constant and transient temperatures. The 

vertical shear spring does not need a reversal path, as reversal of shear does not 

usually occur.  

The Masing Rule [15] was initially created to model the dynamic force-deflection 

relationships of structural members under intensive cyclic seismic loading, when the 

members were loaded into the nonlinear range. It has been widely applied to deal 

with other engineering problems when the material is highly nonlinear and when 

residual strains are highly affected by the load-deformation history. Researchers [9, 

16] have suggested that the Masing Rule could be used to model semi-rigid 

connections in heating and cooling. In this paper, the Masing Rule is incorporated 

into the characteristic curve of each flange spring of the buckling element, to enable 

modelling of the buckling panel under any possible loading-unloading-reloading 

sequence during either constant or transient heating. The Masing Rule has been 

modified for the post-buckling stage (after bottom-flange buckling occurs) to ensure 

that the hysteresis cycles are able to return to their initial points of unloading. 

3.1. At constant temperature 

Based on the Masing Rule, the component characteristics of a spring can be 

represented by the combination of a ͞skeleton͟ curve and a ͞hysteresis͟ curve. A 

schematic illustration of the Masing Rule is shown in Fig. 4. The hysteresis curve is 

the skeleton curve scaled by a factor of two and rotated by 180°. 

If the skeleton curve is described as, 



  

( )f F   (8) 

Then the hysteresis curve can be described as, 

( ) 2 (( ) / 2)A Af F F     (9) 

where AF  is the force at which unloading starts and A is the deformation at AF .  

The compression and tension springs at the same location (Fig. 3) can work in turn, 

depending on the sense of the spring force, to follow the complete loading-

unloading-reloading path.  

3.1.1 Compression Spring 

In the post-buckling stage, previous research [12] has derived vertical force-

deflection relationships for the buckling element, due to the combined effects of 

bottom flange buckling and shear buckling, based on yield-line theory. Deducting the 

effect of shear buckling from the total vertical deflection, the moment-rotation 

relationship of the buckling element due to flange buckling alone is as illustrated in 

Fig. 5. This relationship is based on the assumption that the beam is axially 

unrestrained, and therefore has no net axial force. 

The force-deformation relationship of the compression spring at the buckling flange, 

including the three stages (pre-buckling, plateau and post-buckling), is shown in Fig. 

6(a). The pre-buckling stage ends when the spring force reaches RF , which is the 

axial force at which half of the I-section yields, as shown in Fig. 6(b). The value of RF  

can be calculated using Eq. (10). The shape of the curve in the pre-buckling stage is 

based on EC3 Part 1-2 [17] for steel at elevated temperatures.  

, ( / 2)R y f f fF b t d t      (10) 



  

The axial force remains constant until the initiation of plastic local buckling (Point B). 

Fig. 6(c) shows the yield line pattern in the post-buckling stage.  

It is assumed that, in the post-buckling stage, the stiffness of the bottom spring 

representing the buckled flange is so low compared to that of the tension spring that 

the deformation of the non-buckling flange can be neglected. Therefore, the centre 

of rotation of the buckling element is assumed to be at the top flange, where the 

buckling element is connected to the connection element (Point A in Fig. 3). The 

compression spring deformation can be represented as: 

B d   (11) 

For this axially unrestrained case, only the shear force and bending moment from 

the connected beam are transferred to the buckling element. Therefore, the force 

equilibrium within the buckling element gives: 

0UB BF F 
 
 (12) 

- 0.5UB BF F d M ′ ″  (13) 

where B  is the axial deformation of the buckled flange, M  is the moment about 

the centre-line of the I-section, and UBF
 
and BF

 
are the forces in the unbuckled (top 

for this case) and buckled (bottom for this case) springs, respectively. 

A theoretical model has previously been developed by the authors [12], which can 

be used to determine the moment-rotation relationship (Eq. (14)) of the buckling 

element:  

( )M f   (14) 

Substituting Eqs. (11)-(13) into Eq. (14), the axial force-deformation relationship of 

the buckled spring is: 



  

20.5 ( ) /B BF f d    (15) 

The curved descending part of the moment-rotation relationship of the buckling 

element has been simplified to a multi-linear relationship. The rotation   at any 

given bending moment can be found through linear interpolation within each linear 

increment (Fig. 5). The corresponding spring force is derived based on Eq. (15) as:  

1 -1 2 -1( - ) ( - )x R n B x nF F K D D K D D      (16) 

where 

2
1 -1 -1( - ) / ( ( - ))P n B nK M M d     

(17) 

2
2 -1 -1( - ) / ( ( - ))n n n nK M M d     

(18) 

Fig. 7 (a)-(c) illustrate the various possibilities for re-loading curves, when unloading 

initiates at the different stages (pre-buckling, plateau and post-buckling) for the 

compression spring. The initiation point of unloading in a convergent time step is 

defined as the ͞Intersection Point͟ for the following time step. The loading curve 

prior to the plateau stage (at Point A in Fig. 7) is composed of an initial linear part 

followed by a nonlinear part. It is assumed that the heights of the linear and 

nonlinear parts are identical. When unloading starts from the plateau stage, since 

the hysteresis curve (the thick line) is the skeleton curve (the thin line) scaled by a 

factor of two and rotated by 180° following the Masing Rule, the linear part of the 

unloading curve finishes exactly at the point where it meets the horizontal axis; their 

intersection is defined as the ͞Reference Point͟. The Intersection Point and the 

Reference Point update at every convergent time step. In order to simplify the 

calculation, it is assumed that the linear part of the unloading path always stops at 

the Reference Point; the linear path is followed by a curved part, which is the 

nonlinear part of the initial loading curve scaled by a factor two and rotated 180°. In 



  

other words, the unloading path will stop its linearity when it hits the X axis, and be 

followed by a nonlinear curve for which the tension spring is activated. The force 

resistance of the tension spring is RF . At the end of the unloading curve, the tensile 

force in this spring is equal to the magnitude of the compressive resistance RF  of the 

compression spring. 

Once reloading occurs, if the compressive deformation of the compression spring is 

larger than the recorded position of the Intersection Point, the load path will follow 

the initial loading curve. 

The coordinate of the Reference Point is determined by Eq. (19). 

/CREF C C ICD D F K   (19) 

where CREFD
 
is the coordinate of the Reference Point, ICK is the initial elastic 

stiffness of the compression spring. The compressive deformation CD  and force CF  

are absolute values (always positive). 

If the total spring deformation at the end of an arbitrary iteration is smaller than that 

of the pre-existing Intersection Point, deformation reversal will occur, following the 

thick line between the Intersection Point and Reference Point (the existing unloading 

path). The slope of the unloading path is equal to the initial elastic stiffness ICK  at 

the relevant temperature. The compression force on the unloading curve is: 

( - )C INTER INTER C ICF F D D K   (20) 

For an arbitrary iteration, the spring force can be calculated based on the spring 

deformation of the previous iteration. In the post-buckling stage, the spring stiffness 

on the loading path is negative. This negative stiffness leads to the situation that one 

force corresponds to two possible deformations (one on the loading path, one on 



  

the unloading path). In order to avoid this numerical singularity when using the static 

solver during the calculation, the following approach has been proposed. Point C is 

assumed to be the start of an arbitrary iteration (Fig. 7(c)). For the loading path, a 

͚ǌĞƌŽ͛ ƐƚŝĨĨŶĞƐƐ (instead of a negative stiffness) is assumed to define the start of the 

next iteration. The unloading path remains unchanged. The loading and unloading 

paths become the dashed lines starting from Point C. When the internal force is 

larger than the external, the iteration will follow the unloading path. Otherwise, the 

loading path is adopted, in which case Point D1 is assumed to be the end of this 

iteration. The position of D1 depends on the size of the iteration step. In the next 

iteration Point D2, which has the same deformation as that of Point D1, will be used 

as the starting point, but the spring force is calculated based on the descending post-

buckling curve. At the end of each iteration, the difference between the internal and 

external forces is checked; this iterative process stops when a balance between the 

external and internal forces is found. 

The deformation of the compression spring CD
 
can be calculated according to the 

differential displacement of the two nodes of the buckling element.  When the 

spring deformation is on the unloading path above the Reference Point (Point RP in 

Fig. 7(a, b, c)), the spring will be under tension. The compression spring is 

deactivated; the tension spring at the same location will be activated instead. 

The model has been developed on the basis of the assumption that there is no 

restraint to thermal expansion. The model is also valid for restrained cases, since the 

buckling criterion (the bottom spring experiences a certain amount of compressive 

squash) is calculated from a yield line mechanism, which is not affected by the 

restraint conditions. The only difference between the restrained and unrestrained 



  

cases is that the bottom spring force is larger in the former case than in the latter, 

and the model is capable of adjusting the spring force level to achieve equilibrium.  

3.1.2 Tension Spring 

The characteristics of the tension spring for the initial loading stage are similar to 

those of the compression spring, but lack the post-buckling phase (Fig. 8). The force-

deformation relationship in the pre-buckling stage in Fig. 8 is an illustration based on 

the steel material properties at temperatures above 400ࣙC. The characteristics in the 

pre-buckling stage can be updated if a different material is used.   

3.2. During transient heating 

At elevated temperatures, the material stress-strain characteristic is temperature-

dependent. The essential assumption for deformation reversal at increasing 

temperatures is that the permanent deformation of a spring is unaffected by change 

of temperature, and so the Reference Point of the unloading curve does not change 

between two adjacent temperature steps. The new unloading path will still be linear, 

following the initial slope of the force-deformation relationship at the new 

temperature, and so the Intersection Point (at which unloading initiates) relocates. 

Taking the compression spring at plateau stage as an example, Fig. 9 shows the 

loading and unloading procedure when the spring͛s temperature increases. 

The loading and uploading paths at the initial temperature 1T  are shown in Fig. 9 (a). 

The deformation at the Reference Point can be calculated using, 

1 1- /CREF C C TD D F K     (21) 



  

When the temperature increases to 2T  the Reference Point remains identical, while 

a new Intersection Point can be found using the new initial elastic stiffness 2TK . The 

spring deformation of the new Intersection Point is, 

    2 1 2 2/INTER CREF INTER TD D F K   (22) 

The deformation of the compression spring remains identical between adjacent 

iterations within the same temperature step. Therefore, when the temperature 

increases to , the Intersection Point falls onto the unloading path of the new 

force-deformation relationship where 2TK  is lower than 1TK , as shown in Fig. 9 (b). 

This sudden jump disturbs the force equilibrium, and so in the following iterations 

the spring deformation is adjusted until a balance between the internal and external 

forces is found. The spring will follow the loading path if its deformation is larger 

than that of the Intersection Point ( 2C INTERD D ), where CD  and 2INTERD  are 

absolute values (always positive) of the spring deformation. Otherwise, the spring 

follows the unloading path. The spring force is calculated using Eq. (23): 

2 2 2( )C INTER C INTER TF F D D K    (23) 

When the spring follows the unloading path above the Reference Point, it will be 

subject to tension. The characteristics of the tension spring follow the same rules 

described in Section 3.1.1. A flowchart of the procedure for modelling the 

compression spring is shown in Fig. 10. 

Although the shear spring is a necessary component of the buckling element, it has 

been found to have little influence on the analytical results. The main benefit of 

having a non-rigid shear spring is to allow the simulation of the transverse drift of 

the buckling panel, whereas the transverse drift is negligible here as it does not 

2T



  

influence the bolt-row force distributions, which is the main purpose of this research. 

Moreover, the shear spring starts to function from the post-buckling stage and its 

behaviour is related to the buckled flange spring, not to the applied shear force, thus 

it is not possible develop a shear force-deformation relationship for the shear spring. 

Therefore, the shear spring has been assumed to be rigid in the proposed model.  

The elemental 12 x 12 stiffness matrix uses six degrees of freedom at each node and 

it is assembled by spring stiffness, as presented in Eq. (24). The elemental stiffness 

matrix can be implemented in the overall stiffness matrix for further calculations. 
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4.  Results 

4.1 Verification of the Vulcan models 

In order to verify the newly created component-based element in Vulcan, example 

beams were modelled using both Vulcan and ABAQUS.  A sketch of the Vulcan model 



  

using buckling elements is shown in Fig. 11 (a). The beam element in Vulcan is 

actually a line element, and the end zones of the beam are simulated by the new 

component-based buckling elements.  

In order to allow reasonable comparison, the ABAQUS models also consist of three 

parts: two beam ends modelled by shell elements and the rest of the beam 

simulated using wire elements. The images of ABAQUS models are shown in Fig. 12 

(a). Example beams without the buckling elements at the beam ends were also built 

up in Vulcan (Fig. 11 (b)) and in ABAQUS (Fig. 12 (b)) to investigate the effects of the 

buckling elements by comparing results from the models with and without the 

buckling elements. 

For the shell elements in the ABAQUS models, the four-noded shell element (S4R), 

which is capable of simulating buckling behaviour with reasonable accuracy, was 

adopted. A mesh sensitivity analysis was conducted, which indicated that elements 

of size 15mm x 15mm provided an optimum between accuracy and computing 

efficiency. For the wire element a mesh size of 250mm was adopted after a mesh 

sensitivity analysis. Material properties, including the thermal expansion coefficient 

of steel given by EC3 [17], were used. The models were subject to full axial restraint 

at both ends, and were restrained from out-of-plane deflection so that no overall 

buckling across the weak axis could occur. Two beams, spanning 6m and 9m, were 

modelled. The beam section was UB356x171x51 for the 6m beams, and 

UB457x191x98 for the 9m beams.  In order to achieve different combinations of axial 

force and bending moment the 6m beams were loaded with uniformly distributed 

load of intensity 26.8N/mm (load ratio = 0.4), 33.5N/mm (load ratio = 0.5) and 

40.2N/mm (load ratio = 0.6).  The 9m beams were loaded with uniformly distributed 



  

load of intensity 29.6N/mm (load ratio = 0.4), 37.0N/mm (load ratio = 0.5) and 

44.4N/mm (load ratio = 0.6). The beams were uniformly heated beyond 700ࣙC.  

The force-deformation relationships of the springs for the 6m beam with the 

buckling element subject to a load ratio of 0.5 are shown in Fig. 13. In Fig. 13 (a) the 

dashed curve represents the deformation-temperature relationship of the bottom 

spring. The thin solid curve shows the force-deformation response of this 

compression spring. It has been shown that, the compression force in the bottom 

spring initially increases linearly with the load increase. After the load is fully applied 

to the beam, temperature starts to elevate until around 220ࣙC, while the bottom-

spring goes into plateau stage. When temperature is above 220ࣙC, the bottom spring 

starts to buckle. After the bottom flange buckles (when the deformation is around 

6mm), the compressive force decreases with increase of compressive deformation as 

temperature further elevates. The thick solid curve is the fully-yielded force-

deformation relationship of this spring, for which the decrease in the axial force 

would only be due to the degradation of the material as temperature rises 

(according to EC3 [17]). The difference between these curves illustrates the 

reduction in strength due to buckling. Deformation reversal occurs when the spring 

deformation is 33.5 mm when the temperature is 694ࣙC. The deformation of a 

compression spring can be calculated as the summation of (1) nodal displacement at 

the intersection points (Points A and B in Fig. 11) of the beam and buckling elements 

and (2) spring deformation within the buckling element caused by the nodal rotation 

at the intersection. There is always an equation relating the beam elongation due to 

elevated temperature and the beam elongation needed for geometrical deformation. 

The latter is the summation of (1) nodal displacement at both beam ends and (2) 



  

beam-end movement due to mid-span deflection at the intersection point between 

the beam and buckling elements. Prior to the bottom-spring deformation reversal, 

the rate of beam elongation caused by thermal expansion is relatively large. Points A 

and B tend to be compressed, in common with the bottom spring in the buckling 

element. The deformation reversal of the bottom-spring means that, when large 

mid-span deflection has been produced in the beam at very high temperatures, the 

rate of beam elongation caused by thermal expansion is smaller than the beam-end 

movement due to mid-span deflection. Therefore, the intersection nodes will be 

stretched towards the beam mid-span. The bottom-flange tends to be stretched 

rather than being compressed, due to the combined effect of nodal movement and 

rotation when temperature rises further.  During this reversal, the compression 

spring follows the unloading curve introduced in Section 3. The spring force and its 

compressive deformation reduce together. After the spring force has changed to 

tension, the compression spring is disabled and the tension spring becomes 

active.The response of this spring is represented by the dotted curve. The 

deformation (33.5mm) of the compression spring before it enters tension, 

representing the permanent deformation of the bottom flange, will be taken 

forward by the tension spring. The springs will eventually fail in tension if a failure 

strain is defined for them.  Fig. 13 (b) illustrates the force/temperature-deformation 

relationships of the top spring. It can be seen that this is under tension when the 

beam is initially loaded. When the temperature is elevated to around 200ࣙC, the top 

spring is under compression due to thermal expansion.  The stiffness of the top 

spring remains identical below 200ࣙC. When the temperature is above 200ࣙC, the top 

spring experiences tension force again, due to large nodal rotation at the 



  

intersection point between the buckling element and the beam element. An 

amplified figure of the top-spring force/temperature and deformation relationship 

below 600ࣙC is shown in Fig. 13 (b). 

Comparisons of the results from the ABAQUS and Vulcan models, in terms of beam 

mid-span deflection, axial net force and beam-end moment, against temperature, 

are shown in Figs. 14 - 19. Figs. 14 - 15 show the temperature-deflection 

relationships for two beams (those modelled in ABAQUS, as described in Section 4.1) 

under the same load ratios (0.4, 0.5 and 0.6). Figs. 16 - 17 show the temperature-

axial force relationships. Figs. 18 - 19 show the temperature-moment relationships. 

The thick solid lines represent the results from the Vulcan models with buckling 

elements, whilst the thick dotted lines are for the equivalent ABAQUS models (with 

shell elements at the beam ends). The thin lines show results from the Vulcan and 

ABAQUS models without buckling/shell elements.   

It can be seen from Figs. 14 - 19 that the results from Vulcan and ABAQUS compare 

well for beams with and without the buckling elements, for all load ratios. 

Figs. 14 - 15 show that the use of the buckling element in Vulcan can improve the 

accuracy of prediction of mid-span deflection. Models with the buckling elements 

show the greater deflections, due to the additional beam-end rotations caused by 

bottom-flange buckling.  

Figs. 16 - 17 show that the net compression force at the beam-end decreases when 

the bottom flange buckles. The beam-end bottom-flange buckling can relieve the 

axial compression force caused by restraint to thermal expansion, and therefore 

transfers less compression force onto the adjacent connection element. Beams with 



  

the buckling elements initiate their catenary tension phase sooner than those 

without buckling elements.  

Figs. 18 - 19 show the development of the beam-end major-axis moment as 

temperature increases. It can be seen that, for beams without the buckling element, 

the beam-end moment increases from 100ࣙC to 400ࣙC. This is because both the 

restraint to thermal expansion and the stiffness reduction of the beam induce an 

increase in the curvature at its ends, while the steel strength remains unchanged up 

to 400ࣙC. The end-moment starts to decrease when the temperature reaches 400ࣙC, 

due to the progressive reduction of steel strength above that temperature. For 

beams with the buckling elements the rotational stiffness of the steel beam-ends is 

reduced due to the occurrence of bottom flange buckling, resulting in less moment 

being transferred to the adjacent connections. On the other hand, as the applied 

load increases the beam-end curvatures increase, causing an increase in the beam-

end moment. Therefore, the variation of beam-end moment depends on which of 

these two is more dominant. It can be observed from Figs. 18 - 19 that in most cases 

the beam-end moment decreases between 100ࣙC and 400ࣙC after bottom-flange 

buckling has occurred at around 100ࣙC. However, for the 6m beam subject to a high 

load ratio of 0.6, and the 9m beams under load ratios of 0.5 and 0.6, the beam-end 

moment tends to increase slightly between 300ࣙC and 400ࣙC.  

It has been indicated in the Figs. 13 - 18 that the newly created buckling element is 

capable of accurately modelling the combined effects of beam-end shear buckling 

and bottom-flange buckling of steel beams at elevated temperatures. The good 

match between the Vulcan and ABAQUS modeling results confirms that the buckling 



  

element is able to account for the major structural effects of the net axial 

compression due to restraint to thermal expansion, as mentioned in Section 3.1.  

4.2 Verification of the ABAQUS models 

The differences between the Vulcan models with and without the buckling elements 

and between the ABAQUS models with and without shell elements, as shown in 

Section 4.1, have indicated the importance of considering the beam-end buckling 

phenomena. This is true only if such differences are not caused by the adoption of 

different element types, especially for the ABAQUS models. This section examines 

the sensitivity of the ABAQUS modelling results to the element types adopted. Two 

ABAQUS models, one using wire elements to model the entire beam and one using 

shell elements which are restrained against buckling, were used to model the beam 

ends, retaining the wire elements for the rest of the beam, and results were 

compared as shown in Fig. 12. 

The same mesh size, element type and temperature curve used for the ABAQUS 

models described in Section 4.1 were used. The beam was of section UB356x171x51 

and 3m length; this is short enough to avoid bottom-flange buckling. The beam web 

was fully restrained against out-of-plane deformation, and therefore no beam-web 

shear buckling was allowed. The two ABAQUS models resulted in indistinguishable 

deflection and axial force, as shown in Fig. 20. This confirms that the differences in 

behaviour between models with and without shell elements at beam-ends are 

entirely due to beam-end buckling, and are not caused by the use of different 

element types. 



  

4.3 Illustrative examples of beams with buckling and connection elements 

The component-based buckling element has been verified, and the influence of the 

buckling element on the behaviour of a beam has been demonstrated in Section 4.1. 

In this section the buckling element is used together with the existing component-

based connection element of Vulcan to model isolated beams. Models with and 

without the buckling elements are compared. The influence of the buckling elements 

on the beam deflection, and on the internal force distribution among the bolt rows 

of the adjacent connections, are investigated. 

The models are of the same dimensions previously used for the 6m and 9m beams 

described in Section 4.1. End-plate connections, designed to be moment resistant in 

accordance with BS EN 1993-1-8 [18] and its accompanying National Annex [19], are 

used. The connection details are shown in Fig. 21. Grade 8.8 M20 bolts and 15mm 

thick endplates are used. One purpose of this research is to investigate the influence 

of the buckling element on the force distribution within the bolt rows of the adjacent 

connection. To focus on this, the stress area of all bolts is assumed to be 500mm
2
 

(instead of the usual nominal value 245mm
2 

for M20 bolts) to avoid bolt fracture. 

Figs. 22 - 23 show comparisons of the force distribution between connection bolt-

rows, for beams of different spans (6m and 9m) subject to various load ratios (0.4, 

0.5 and 0.6) with and without the buckling element. The component-based 

connection element is composed of six horizontal springs (two compression springs, 

representing the top and bottom flanges and four tension springs, representing the 

bolt rows). The bolt-row springs can only transfer tension force [10]. The general 

trend is that, in the initial ambient-temperature loading stage, the top three tension 

bolt-row springs and the bottom flange spring are mobilized to resist the beam-end 



  

rotation caused by the external load.  After heating starts, the beam starts to expand 

and the connections are subjected to a combination of compression and bending. At 

this stage all the four tension bolt rows are progressively deactivated due to the 

compression caused by the restraint to thermal expansion. Once all the tension bolt 

rows are deactivated, the top compression spring starts to work. The deflection of 

the beam increases dramatically when its temperature increases further, and the 

four tension bolt rows are progressively re-activated; the top compression spring is 

switched off. At around 700°C the beams start to develop catenary tension, and the 

bending action is reduced.  Eventually all the four tension bolt rows are again 

activated, and both compression springs are deactivated. 

In Figs. 22 - 23 results for models with and without the buckling element are 

distinguished by line thickness (thick lines for models with buckling element; thin 

ones for those without). Colours and marker shapes are used to distinguish different 

bolt rows. When the tension springs (representing bolt rows) are activated at high 

temperatures, the thick lines are all below the thin lines. In other words, the tension 

forces at the bolt rows of a connection are lower when buckling is allowed, 

compared to the equivalent case without buckling elements. This is reasonable, 

given the lower rotational stiffness at the beam-end in the presence of local buckling. 

Therefore, the adjacent connection rotates less, resulting in lower forces in each bolt 

row. Without buckling elements (thin lines), the forces in the upper bolt rows reach 

their maximum values at lower temperature. This is because, in this case, the peak 

spring force corresponds to the yielding of a bolt row, and the upper bolt rows yield 

earlier than the lower ones as temperature rises. After the upper bolt rows have 

yielded, more load is distributed to the lower bolt rows, accelerating the yielding of 



  

those bolt rows. The decrease in the spring forces after their peak values are due to 

the reduction of yield strength as temperature increases.  On the other hand, in the 

cases with buckling elements, the tension forces in all four bolt-rows reach their 

peaks at the same temperature. The inclusion of the buckling element allows the 

consideration of the reduction of bending moment at beam-ends at the post-

buckling stage. This causes a reversal of the beam-end rotation, resulting in a 

decrease in the bolt force.  

5. Conclusion 

In this study a component-based beam-end buckling element, which considers 

beam-web shear buckling and bottom-flange buckling within the beam-end buckling 

zone, has for the first time been created for beams of Classes 1 and 2. The 

component-based model is able to consider the post-buckling descending force-

deflection relationship of its bottom spring, which simulates the bottom-flange 

buckling behaviour. Each spring in the buckling element is able to deal with 

deformation reversal, which commonly happens at high temperatures. The buckling 

element has been implemented into the global frame analysis software Vulcan. The 

buckling element has been verified against ABAQUS models on isolated beams. After 

implementing the buckling element the Vulcan models agree considerably better 

with the ABAQUS models, compared to the Vulcan models without the buckling 

elements. The influence of the buckling element on the adjacent connection has also 

been investigated. The results indicate that, by including the buckling element, the 

net axial compression force and moment transferred from beam to connection have 

been reduced. Hence, the stresses within the connection bolt rows are reduced 

when the beam-end buckling is taken into consideration.  In general, by ignoring 



  

buckling near to the beam-to-column connections in the structural fire engineering 

design process, the results will tend to be conservative in terms of the connection 

details specified.    
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