140,406 research outputs found

    Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model

    Full text link
    The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin S=1/2 are dynamically investigated within the framework of a chiral constituent quark model by solving a resonating group method (RGM) equation. The results show that the interaction between Sigma_c and Dbar is attractive, which consequently results in a Sigma_c Dbar bound state with the binding energy of about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar and Lambda_c Dbar is found to be negligible due to the fact that the gap between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with arXiv:nucl-th/0606056 by other author

    Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    Full text link
    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo} \hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the polodial field Byo(x)=Bpotanh(x/λ)B_{yo} (x) = B_{po} \tanh (x/\lambda), which is the only resonant surface in 2D or in the absence of a guide field. Here BpoB_{po} is the asymptotic value of the equilibrium poloidal field, BzoB_{zo} is the constant equilibrium guide field, and λ\lambda is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θarctan(kz/ky)\theta \equiv \arctan(k_z/k_y). The resonant surface location for angle θ\theta is x_s = - \lambda \arctanh (\tan \theta B_{zo}/B_{po}), and the existence of a resonant surface requires θ<arctan(Bpo/Bzo)|\theta| < \arctan (B_{po} / B_{zo}). The most unstable angle is oblique, i.e. θ0\theta \neq 0 and xs0x_s \neq 0, in the constant-ψ\psi regime, but parallel, i.e. θ=0\theta = 0 and xs=0x_s = 0, in the nonconstant-ψ\psi regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ\psi and nonconstant-ψ\psi regimes. The growth rate of this mode is γmax/ΓoSL1/4(1μ4)1/2\gamma_{\textrm{max}}/\Gamma_o \simeq S_L^{1/4} (1-\mu^4)^{1/2}, in which Γo=VA/L\Gamma_o = V_A/L, VAV_A is the Alfv\'{e}n speed, LL is the current sheet length, and SLS_L is the Lundquist number. The number of plasmoids scales as NSL3/8(1μ2)1/4(1+μ2)3/4N \sim S_L^{3/8} (1-\mu^2)^{-1/4} (1 + \mu^2)^{3/4}.Comment: 9 pages, 8 figures, to be published in Physics of Plasma

    On Kostant's partial order on hyperbolic elements

    Full text link
    We study Kostant's partial order on the elements of a semisimple Lie group in relations with the finite dimensional representations. In particular, we prove the converse statement of [3, Theorem 6.1] on hyperbolic elements.Comment: 7 page

    The breakage prediction for hydromechanical deep drawing based on local bifurcation theory

    Get PDF
    A criterion of sheet metal localized necking under plane stress was established based on the bifurcation theory and the characteristics theory of differential equation. In order to be capable to incorporate the directional dependence of the plastic strain rate on stress rate, Ito-Goya’s constitutive equation which gave a one to one relationship between stress rate component and plastic strain rate component was employed. The hydromechanical deep drawing process of a cylindrical cup part was simulated using the commercial software ABAQUS IMPLICIT. The onset of breakage of the part during the forming process was predicted by combining the simulation results with the local necking criterion. The proposed method is applied to the hydro-mechanical deep drawing process for A2219 aluminum alloy sheet metal to predict the breakage of the cylindrical cup part. The proposed method can be applied to the prediction of breakage in the forming of the automotive bodies

    Dust-to-gas ratio, XCOX_{\rm CO} factor and CO-dark gas in the Galactic anticentre: an observational study

    Full text link
    We investigate the correlation between extinction and H~{\sc i} and CO emission at intermediate and high Galactic latitudes (|b|>10\degr) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6,000\,deg2^2 at a spatial angular resolution of 6\,arcmin. In the current work, the map is combined with data from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR=AV/N(H)DGR=A_V/N({\rm H}) and CO-to-H2\rm H_2 conversion factor XCO=N(H2)/WCOX_{\rm CO}=N({\rm H_2})/W_{\rm CO} for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR=(4.15±0.01)×1022DGR=(4.15\pm0.01) \times 10^{-22}\,magcm2\rm mag\,cm^{2} and XCO=(1.72±0.03)×1020X_{\rm CO}=(1.72 \pm 0.03) \times 10^{20}\,cm2(Kkms1)1\rm cm^{-2}\,(K\,km\,s^{-1})^{-1}. We have also investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the VV-band extinction: N(DG)2.2×1021(AVAVc)cm2N({\rm DG}) \simeq 2.2 \times 10^{21} (A_V - A^{c}_{V})\,\rm cm^{-2}. The mass fraction of DG is found to be fDG0.55f_{\rm DG}\sim 0.55 toward the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2\rm H_2 cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Dirac cohomology, elliptic representations and endoscopy

    Full text link
    The first part (Sections 1-6) of this paper is a survey of some of the recent developments in the theory of Dirac cohomology, especially the relationship of Dirac cohomology with (g,K)-cohomology and nilpotent Lie algebra cohomology; the second part (Sections 7-12) is devoted to understanding the unitary elliptic representations and endoscopic transfer by using the techniques in Dirac cohomology. A few problems and conjectures are proposed for further investigations.Comment: This paper will appear in `Representations of Reductive Groups, in Honor of 60th Birthday of David Vogan', edited by M. Nervins and P. Trapa, published by Springe

    Spinning String and Giant Graviton in Electric/Magnetic Field Deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4

    Full text link
    We apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to the 11D M-theory with a stack of M2-branes \bot M2-branes, then, through the mechanism of Kaluza-Klein reduction and a series of the T duality we obtain the corresponding background of a stack of D1-branes \bot D5-branes which, in the near-horizon limit, becomes the magnetic or electric Melvin field deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4. We find the giant graviton solution in the deformed spacetime and see that the configuration whose angular momentum is within a finite region could has a fixed size and become more stable than the point-like graviton, in contrast to the undeformed giant graviton which only exists when its angular momentum is a specific value and could have arbitrary size. We discuss in detail the properties of how the electric/magnetic Melvin field will affect the size of the giant gravitons. We also adopt an ansatz to find the classical string solutions which are rotating in the deformed S3S^3 with an angular momentum in the rotation plane. The spinning string and giant graviton solutions we obtained show that the external magnetic/electric flux will increase the solution energy. Therefore, from the AdS/CFT point of view, the corrections of the anomalous dimensions of operators in the dual field theory will be positive. Finally, we also see that the spinning string and giant graviton in the near-horizon spacetime of Melvin field deformed D5-branes background have the similar properties as those in the deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4.Comment: Latex 21 pages, slightly detail calculation

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT
    corecore