52,570 research outputs found
A Model of Low-lying States in Strongly Interacting Electroweak Symmetry-Breaking Sector
It is proposed that, in a strongly-interacting electroweak sector, besides
the Goldstone bosons, the coexistence of a scalar state () and vector
resonances such as [)], [] and
[] is required by the proper Regge behavior of the
forward scattering amplitudes. This is a consequence of the following
well-motivated assumptions: (a). Adler-Weisberger-type sum rules and the
superconvergence relations for scattering amplitudes hold in this strongly
interacting sector; (b). the sum rules at are saturated by a minimal set
of low-lying states with appropriate quantum numbers. It therefore suggests
that a complete description should include all these resonances. These states
may lead to distinctive experimental signatures at future colliders.Comment: revised version, to appear in Modern Physics Letters A; file also
available via anonymous ftp at ftp://ucdhep.ucdavis.edu/han/sews/lowlying.p
Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe
Motivated by our recent work \cite{set1}, we generalize this work to the
interacting non-flat case. Therefore in this paper we deal with canonical,
phantom and quintom models, with the various fields being non-minimally coupled
to gravity, within the framework of interacting holographic dark energy. We
employ the holographic model of interacting dark energy to obtain the equation
of state for the holographic energy density in non-flat (closed) universe
enclosed by the event horizon measured from the sphere of horizon named .Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010
The trispectrum in ghost inflation
We calculate the trispectrum in ghost inflation where both the contact
diagram and scale-exchange diagram are taken into account. The shape of
trispectrum is discussed carefully and we find that the local form is absent in
ghost inflation. In general, for the non-local shape trispectrum there are not
analogous parameters to and which can
completely characterize the size of local form trispectrum.Comment: 19 pages, 8 figures; clarifications and corrections added, version
accepted for publication in JCA
A Tracker Solution for a Holographic Dark Energy Model
We investigate a kind of holographic dark energy model with the future event
horizon the IR cutoff and the equation of state -1. In this model, the
constraint on the equation of state automatically specifies an interaction
between matter and dark energy. With this interaction included, an accelerating
expansion is obtained as well as the transition from deceleration to
acceleration. It is found that there exists a stable tracker solution for the
numerical parameter , and smaller than one will not lead to a physical
solution. This model provides another possible phenomenological framework to
alleviate the cosmological coincidence problem in the context of holographic
dark energy. Some properties of the evolution which are relevant to
cosmological parameters are also discussed.Comment: 10 pages, 3 figures; accepted for publication in Int.J.Mod.Phys.
Multipole polarizability of a graded spherical particle
We have studied the multipole polarizability of a graded spherical particle
in a nonuniform electric field, in which the conductivity can vary radially
inside the particle. The main objective of this work is to access the effects
of multipole interactions at small interparticle separations, which can be
important in non-dilute suspensions of functionally graded materials. The
nonuniform electric field arises either from that applied on the particle or
from the local field of all other particles. We developed a differential
effective multipole moment approximation (DEMMA) to compute the multipole
moment of a graded spherical particle in a nonuniform external field. Moreover,
we compare the DEMMA results with the exact results of the power-law graded
profile and the agreement is excellent. The extension to anisotropic DEMMA will
be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication
Recommended from our members
Nanoindentation Of Si Nanostructures: Buckling And Friction At Nanoscales
A nanoindentation system was employed to characterize mechanical properties of silicon nanolines (SiNLs), which were fabricated by an anisotropic wet etching (AWE) process. The SiNLs had the linewidth ranging from 24 nm to 90 nm, having smooth and vertical sidewalls and the aspect ratio (height/linewidth) from 7 to 18. During indentation, a buckling instability was observed at a critical load, followed by a displacement burst without a load increase, then a full recovery of displacement upon unloading. This phenomenon was explained by two bucking modes. It was also found that the difference in friction at the contact between the indenter and SiNLs directly affected buckling response of these nanolines. The friction coefficient was estimated to be in a range of 0.02 to 0.05. For experiments with large indentation displacements, irrecoverable indentation displacements were observed due to fracture of Si nanolines, with the strain to failure estimated to be from 3.8% to 9.7%. These observations indicated that the buckling behavior of SiNLs depended on the combined effects of load, line geometry, and the friction at contact. This study demonstrated a valuable approach to fabrication of well-defined Si nanoline structures and the application of the nanoindentation method for investigation of their mechanical properties at the nanoscale.Microelectronics Research Cente
Electronic properties of the novel 4d metallic oxide SrRhO3
The novel 4d perovskite compound SrRhO3 was investigated by isovalent doping
studies. The solubility limits of Ca and Ba onto Sr-site were below 80% and
20%, respectively. Although SrRhO3 was chemically compressed, approximately
5.7% by the Ca doping, no significant influence was observed on the magnetic
and electrical properties.Comment: To be published in a special issue of Physica B (the proceedings of
LT23
- …