1,853 research outputs found

    Geometric creation of quantum vorticity

    Get PDF
    We consider superfluidity and quantum vorticity in rotating spacetimes. The system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation. Rotation terms are identified and found to lead to the transfer of angular momentum of the spacetime to the scalar field. The scalar field responds by rotating, physically behaving as a superfluid, through the creation of quantized vortices. We demonstrate the vortex nucleation through numerical simulatio

    Electron-phonon vertex in the two-dimensional one-band Hubbard model

    Full text link
    Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective electron-phonon (el-ph) coupling in a two-dimensional one-band Hubbard model. We consider a momentum-independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the on-site Coulomb interaction UU acts to effectively suppress the ionic el-ph coupling at all electron- and phonon- momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation theory to order U2U^2. However, entering the strong-correlation regime, we find that the forward scattering process stops decreasing and begins to substantially increase as a function of UU, leading to an effective el-ph coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions, screening is the dominant correlation effect suppressing the el-ph coupling, at larger UU values irreducible vertex corrections become more important and give rise to this increase. These vertex corrections depend crucially on the renormalized electronic structure of the strongly correlated system.Comment: 5 pages, 4 eps-figures, minor change

    Model of a fluid at small and large length scales and the hydrophobic effect

    Full text link
    We present a statistical field theory to describe large length scale effects induced by solutes in a cold and otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes and corresponding constraints, integration over the Gaussian field yields an effective lattice gas Hamiltonian for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamiltonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit solvent dynamics and structure in simulation studies of large molecular assemblies

    CP violation in Bd,sl+lB_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0l+lB^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bdl+lB_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=μl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0l+l(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure

    Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    Full text link
    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter gNLg_{NL}. The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of gNLg_{NL} and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for gNL>0g_{NL}>0 and less of both for gNL<0g_{NL}<0. The deviation increases linearly with gNLg_{NL} and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of gNLg_{NL} that are clearly distinct from the quadratic order perturbations, encoded in the parameter fNLf_{NL}. Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between gNLg_{NL} and fNLf_{NL} type non-Gaussianities.Comment: 18+1 page

    Time varying α\alpha in N=8 extended Supergravity

    Full text link
    There has been some evidence that the fine structure "constant" α\alpha may vary with time. We point out that this variation can be described by a scalar field in some supergravity theory in our toy model, for instance, the N=8 extended supergravity in four dimensions which can be accommodated in M-theory.Comment: 5 pages,1 figures. Accepted for publication in JHE

    Backward pion-nucleon scattering

    Get PDF
    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the NαN_\alpha, NγN_\gamma, Δδ\Delta_\delta and Δβ\Delta_\beta trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable uu, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a G39G_{39} resonance with a mass of 2.83 GeV as member of the Δβ\Delta_{\beta} trajectory from the corresponding Chew-Frautschi plot.Comment: 12 pages, 16 figure
    corecore