112,630 research outputs found
A first step toward higher order chain rules in abelian functor calculus
One of the fundamental tools of undergraduate calculus is the chain rule. The
notion of higher order directional derivatives was developed by Huang,
Marcantognini, and Young, along with a corresponding higher order chain rule.
When Johnson and McCarthy established abelian functor calculus, they proved a
chain rule for functors that is analogous to the directional derivative chain
rule when . In joint work with Bauer, Johnson, and Riehl, we defined an
analogue of the iterated directional derivative and provided an inductive proof
of the analogue to the chain rule of Huang et al.
This paper consists of the initial investigation of the chain rule found in
Bauer et al., which involves a concrete computation of the case when . We
describe how to obtain the second higher order directional derivative chain
rule for abelian functors. This proof is fundamentally different in spirit from
the proof given in Bauer et al. as it relies only on properties of cross
effects and the linearization of functors
Clustering documents with active learning using Wikipedia
Wikipedia has been applied as a background knowledge base to various text mining problems, but very few attempts have been made to utilize it for document clustering. In this paper we propose to exploit the semantic knowledge in Wikipedia for clustering, enabling the automatic grouping of documents with similar themes. Although clustering is intrinsically unsupervised, recent research has shown that incorporating supervision improves clustering performance, even when limited supervision is provided. The approach presented in this paper applies supervision using active learning. We first utilize Wikipedia to create a concept-based representation of a text document, with each concept associated to a Wikipedia article. We then exploit the semantic relatedness between Wikipedia concepts to find pair-wise instance-level constraints for supervised clustering, guiding clustering towards the direction indicated by the constraints. We test our approach on three standard text document datasets. Empirical results show that our basic document representation strategy yields comparable performance to previous attempts; and adding constraints improves clustering performance further by up to 20%
A Study of Anyon Statistics by Breit Hamiltonian Formalism
We study the anyon statistics of a dimensional Maxwell-Chern-Simons
(MCS) gauge theory by using a systemmetic metheod, the Breit Hamiltonian
formalism.Comment: 25 pages, LATE
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state
Analysis and interpretation of high transverse entanglement in optical parametric down conversion
Quantum entanglement associated with transverse wave vectors of down
conversion photons is investigated based on the Schmidt decomposition method.
We show that transverse entanglement involves two variables: orbital angular
momentum and transverse frequency. We show that in the monochromatic limit high
values of entanglement are closely controlled by a single parameter resulting
from the competition between (transverse) momentum conservation and
longitudinal phase matching. We examine the features of the Schmidt eigenmodes,
and indicate how entanglement can be enhanced by suitable mode selection
methods.Comment: 4 pages, 4 figure
Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103
Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy
A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms
[1] We evaluate the performance of recent empirical magnetic field models (Tsyganenko, 1996, 2002a, 2002b; Tsyganenko and Sitnov, 2005, hereafter referred to as T96, T02 and TS05, respectively) during magnetic storm times including both pre- and post-storm intervals. The model outputs are compared with GOES observations of the magnetic field at geosynchronous orbit. In the case of a major magnetic storm, the T96 and T02 models predict anomalously strong negative Bz at geostationary orbit on the nightside due to input values exceeding the model limits, whereas a comprehensive magnetic field data survey using GOES does not support that prediction. On the basis of additional comparisons using 52 storm events, we discuss the strengths and limitations of each model. Furthermore, we quantify the performance of individual models at predicting geostationary magnetic fields as a function of local time, Dst, and storm phase. Compared to the earlier models (T96 and T02), the most recent storm-time model (TS05) has the best overall performance across the entire range of local times, storm levels, and storm phases at geostationary orbit. The field residuals between TS05 and GOES are small (≤3 nT) compared to the intrinsic short time-scale magnetic variability of the geostationary environment even during non-storm conditions (∼24 nT). Finally, we demonstrate how field model errors may affect radiation belt studies when estimating electron phase space density
- …