225,487 research outputs found
Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks
We investigate the effect of anisotropic and long-range dipole-dipole
interaction (DDI) on the center motions of nonoverlapping Bose-Einstein
condensates (BEC) in bilayer and multilayer stacks. In the bilayer, it is shown
analytically that while DDI plays no role in the in-phase modes of center
motions of condensates, out-of-phase mode frequency () depends
crucially on the strength of DDI (). At the small- limit,
. In the multilayer stack, transverse
modes associated with center motions of coupled condensates are found to be
optical phonon like. At the long-wavelength limit, phonon velocity is
proportional to .Comment: 7 pages, 5 figure
Using modified Gaussian distribution to study the physical properties of one and two-component ultracold atoms
Gaussian distribution is commonly used as a good approximation to study the
trapped one-component Bose-condensed atoms with relatively small nonlinear
effect. It is not adequate in dealing with the one-component system of large
nonlinear effect, nor the two-component system where phase separation exists.
We propose a modified Gaussian distribution which is more effective when
dealing with the one-component system with relatively large nonlinear terms as
well as the two-component system. The modified Gaussian is also used to study
the breathing modes of the two-component system, which shows a drastic change
in the mode dispersion at the occurrence of the phase separation. The results
obtained are in agreement with other numerical results.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.
Oscillations of Bose condensates in a one-dimensional optical superlattice
Oscillations of atomic Bose-Einstein condensates in a 1D optical lattice with
a two-point basis is investigated. In the low-frequency regime, four branches
of modes are resolved, that correspond to the transverse in-phase and
out-of-phase breathing modes, and the longitudinal acoustic and optical phonon
modes of the condensates. Dispersions of these modes depend intimately on the
values of two intersite Josephson tunneling strengths, and , and the
on-site repulsion between the atoms. Observation of these mode dispersions
is thus a direct way to access them.Comment: 5 pages,2 figure
Spin-polarized quasiparticle transport in cuprate superconductors
The effects of spin-polarized quasiparticle transport in superconducting YBa2Cu3O7-delta (YBCO) epitaxial films are investigated by means of current injection into perovskite ferromagnet-insulator-superconductor (F-I-S) heterostructures. These effects are compared with the injection of simple quasiparticles into control samples of perovskite nonmagnetic metal-insulator-superconductor (N-I-S). Systematic studies of the critical current density (J(c)) as a function of the injection current density (J(inj)), temperature (T), and the thickness (d) of the superconductor reveal drastic differences between the F-I-S and N-I-S heterostructures, with strong suppression of J(c) and a rapidly increasing characteristic transport length near the superconducting transition temperature T-c only in the F-I-S samples. The temperature dependence of the efficiency (etaequivalent toDeltaJ(c)/J(inj); DeltaJ(c): the suppression of critical current due to finite J(inj)) in the F-I-S samples is also in sharp contrast to that in the N-I-S samples, suggesting significant redistribution of quasiparticles in F-I-S due to the longer lifetime of spin-polarized quasiparticles. Application of conventional theory for nonequilibrium superconductivity to these data further reveal that a substantial chemical potential shift mu(*) in F-I-S samples must be invoked to account for the experimental observation, whereas no discernible chemical potential shift exists in the N-I-S samples, suggesting strong effects of spin-polarized quasiparticles on cuprate superconductivity. The characteristic times estimated from our studies are suggestive of anisotropic spin relaxation processes, possibly with spin-orbit interaction dominating the c-axis spin transport and exchange interaction prevailing within the CuO2 planes. Several alternative scenarios attempted to account for the suppression of critical currents in F-I-S samples are also critically examined, and are found to be neither compatible with experimental data nor with the established theory of nonequilibrium superconductivity
- β¦