22 research outputs found

    Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

    Full text link
    We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguide together. Analyte contained in the trapezoidal trench channel can interact with the evanescent field from the waveguide beneath. The evanescent field can be further enhanced by plasmonic nanostructures. With the help of gold nano bowtie antennas, the studied waveguide shows outstanding trapping capability on 10 nm polystyrene nanoparticles. We show that the bowtie antennas can lead to 60-fold enhancement of electric field in the antenna gap. The optical trapping force on a nanoparticle is boosted by three orders of magnitude. A strong tendency shows the nanoparticle is likely to move to the high field strength region, exhibiting the trapping capability of the antenna. Gradient force in vertical direction is calculation by using a point-like dipole assumption, and the analytical solution matches the full-wave simulation well. The investigation indicates that nanostructure patterned silicon nitride trench waveguide is suitable for optical trapping and nanoparticle sensing applications

    Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths

    Get PDF
    Conventional SOI waveguide technology, serving as the foundation of near-IR photonics, meets its limitation in mid-IR due to high loss associated with the buried oxide. Silicon-on-sapphire (SOS) waveguides are considered as a good mid-IR alternative, because the transparency window of sapphire is up to 6 μm and SOS waveguides are compatible with SOI technology. We show that properly-designed SOS waveguides can facilitate frequency band conversion between near-IR and mid-IR. An indirect mid-IR detection scheme is proposed and the mid-IR signal is down-converted to telecommunication wavelength (1.55 μm) through SOS waveguides and indirectly detected by near-IR detectors. The performance of the indirect mid-IR detection scheme is discussed. Particularly we model and compare the noise performance of the indirect detection with direct detection using state-of-the-art mid-IR detectors. In addition to advantages of room temperature and high-speed operation, the results show that the proposed indirect detection can improve the electrical signal-to-noise ratio up to 50dB, 23dB and 4dB, compared to direct detection by PbSe, HgCdTe and InSb detectors respectively. The improvement is even more pronounced in detection of weak MWIR signals. In order to further boost the performance, we also investigate mechanisms to increasing the conversion efficiency in SOS waveguide wavelength converters. The conversion efficiency can be improved by periodically cascading SOS waveguide sections with opposite dispersion characteristics to achieve quasi-phase-matching. Conversion efficiency enhancement over 30dB and the conversion bandwidth increased by 2 times are demonstrated, which may facilitate the fabrication of parametric oscillators that can improve the conversion efficiency by 50dB

    Analytical study on arbitrary waveform generation by MEMS micro mirror arrays.

    No full text
    We provide analytical modeling and the detailed procedure that is used in recently proposed arbitrary waveform generation technique by using MEMS digital micro-mirror arrays. We estimate the achievable temporal resolution, repetition rate, modulation index and the rise/fall times of the final waveform as figure of merit in the proposed systems. We show that reducing the diffraction limit via increasing the ratio of beam size to lens focal length (>0.075) and the spatial modulation down to single mirror pitch size (10.8μm), waveforms up to 18GHz repetition rates with >90% modulation index and <100ps rise times are achievable. Theoretical calculations are compared with experimental generation of 120MHz square waves and 160MHz sawtooth waves and obtained good agreement

    Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors

    No full text
    Major trace gases have absorption lines in mid-IR. We propose silicon-on-sapphire waveguides at mid-IR for gas sensing based on evanescent field absorption. This can provide a general platform for multipurpose sensing of different types of gases in a reusable fashion. Three types of waveguides (strip, rib and slot) are investigated on their geometrical dependence of evanescent-field ratio (EFR) and propagation loss to serve as the proposed gas sensor. Slot waveguide provides the highest EFR (>25%) in mid-IR with moderate dimension, but its fabrication can be more challenging and its high loss (~10 dB/cm) impairs the sensing resolution and necessitates higher input power in longer waveguides. Strip and rib waveguides can achieve similar EFR with smaller dimensions. We analyze the detection of CO2 in atmosphere based on its mid-IR absorption peak at ~4.23 µm as a case study. Numerical analysis based on up-to-date commercial mid-IR detector parameters shows that a resolution of 2 ppm, 5 ppm and 50 ppm can be achieved in cooled InSb, room-temperature HgCdTe and room-temperature PbSe detectors respectively by using 1 cm waveguides. Effect of waveguide loss also has been investigated

    Fast Arbitrary Waveform Generation by Using Digital Micromirror Arrays

    No full text
    corecore