228 research outputs found

    Research on application progress of agricultural big data

    Get PDF
    under the background of rapid development of informatization, big data plays an important role in industrial upgrading and promotes the intelligent and intensive transformation of industrial mode. In the fi eld of agricultural development, the application of big data technology has promoted the informatization and modernization of China’s agriculture and played a positive role in promoting China’s agricultural development. However, the development process of agricultural informatization is still in its infancy, and the application of big data technology is still not deep enough. Based on this, this paper explores the application progress of agricultural big data, hoping to promote the deep integration of big data and the development of agricultural industry

    Perception-aware low-power audio processing techniques for portable devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adipocyte Liver Kinase b1 Suppresses Beige Adipocyte Renaissance Through Class IIa Histone Deacetylase 4.

    Get PDF
    Uncoupling protein 1+ beige adipocytes are dynamically regulated by environment in rodents and humans; cold induces formation of beige adipocytes, whereas warm temperature and nutrient excess lead to their disappearance. Beige adipocytes can form through de novo adipogenesis; however, how "beiging" characteristics are maintained afterward is largely unknown. In this study, we show that beige adipocytes formed postnatally in subcutaneous inguinal white adipose tissue lost thermogenic gene expression and multilocular morphology at the adult stage, but cold restored their beiging characteristics, a phenomenon termed beige adipocyte renaissance. Ablation of these postnatal beige adipocytes inhibited cold-induced beige adipocyte formation in adult mice. Furthermore, we demonstrated that beige adipocyte renaissance was governed by liver kinase b1 and histone deacetylase 4 in white adipocytes. Although neither presence nor thermogenic function of uncoupling protein 1+ beige adipocytes contributed to metabolic fitness in adipocyte liver kinase b1-deficient mice, our results reveal an unexpected role of white adipocytes in maintaining properties of preexisting beige adipocytes

    H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis

    Get PDF
    Cholestasis induces the hepatic long non-coding RNA H19, which promotes the progression of cholestatic liver fibrosis. However, microRNAs that are dysregulated by H19 during cholestasis remain elusive. Using miRNA-sequencing analysis followed by qPCR validation, we identified marked upregulation of eight members of the let-7 family in cholestatic livers by bile duct ligation (BDL) and H19 overexpression. In particular, the expression of let-7a-1/7d/7f-1 was highly induced in H19-BDL livers but decreased in H19KO-BDL livers. Interestingly, H19 decreased the nuclear let-7 precursors as well as the primary transcripts of let-7a-1/7d/7f-1 levels in BDL mouse livers. Bioinformatics, RNA pull-down, and RNA immunoprecipitation (RIP) assays revealed that the crucial RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1), an H19 interaction partner, interacted with the precursors of let-7a-1 and let-7d and suppressed their maturation. Both PTBP1 and let-7 expression was differentially regulated by different bile acid species in hepatocyte and cholangiocyte cells. Further, H19 negatively regulated PTBP1's mRNA and protein levels but did not affect its subcellular distribution in BDL mouse livers. Moreover, we found that H19 restrained but PTBP1 facilitated the bioavailability of let-7 miRNAs to their targets. Taken together, this study revealed for the first time that H19 promoted let-7 expression by decreasing PTBP1's expression level and its binding to the let-7 precursors in cholestasis

    TGR5: A Novel Target for Weight Maintenance and Glucose Metabolism

    Get PDF
    TGR5, an emerging G protein-coupled receptor, was identified as a membrane receptor for bile acids. The expression of TGR5 and its function are distinct from the previously identified nuclear bile acid receptor, farnesoid X receptor (FXR). These two bile acid receptors complement with each other for maintaining bile acid homeostasis and mediating bile acid signaling. Both receptors are also shown to play roles in regulating inflammation and glucose metabolism. An interesting finding for TGR5 is its role in energy metabolism. The discovery of TGR5 expression in brown adipocyte tissues (BATs) and the recent demonstration of BAT in adult human body suggest a potential approach to combat obesity by targeting TGR5 to increase thermogenesis. We summarize here the latest finding of TGR5 research, especially its role in energy metabolism and glucose homeostasis
    corecore