34 research outputs found

    Metabonomic profiling of clubroot-susceptible and clubroot-resistant radish and the assessment of disease-resistant metabolites

    Get PDF
    Plasmodiophora brassicae causes a serious threat to cruciferous plants including radish (Raphanus sativus L.). Knowledge on the pathogenic regularity and molecular mechanism of P. brassicae and radish is limited, especially on the metabolism level. In the present study, clubroot-susceptible and clubroot-resistant cultivars were inoculated with P. brassicae Race 4, root hairs initial infection of resting spores (107 CFU/mL) at 24 h post-inoculation and root galls symptom arising at cortex splitting stage were identified on both cultivars. Root samples of cortex splitting stage of two cultivars were collected and used for untargeted metabonomic analysis. We demonstrated changes in metabolite regulation and pathways during the cortex splitting stage of diseased roots between clubroot-susceptible and clubroot-resistant cultivars using untargeted metabonomic analysis. We identified a larger number of differentially regulated metabolites and heavier metabolite profile changes in the susceptible cultivar than in the resistant counterpart. The metabolites that were differentially regulated in both cultivars were mostly lipids and lipid-like molecules. Significantly regulated metabolites and pathways according to the P value and variable important in projection score were identified. Moreover, four compounds, including ethyl α-D-thioglucopyranoside, imipenem, ginsenoside Rg1, and 6-gingerol, were selected, and their anti-P. brassicae ability and effects on seedling growth were verified on the susceptible cultivar. Except for ethyl α-D-thioglucopyranoside, the remaining could inhibit clubroot development of varing degree. The use of 5 mg/L ginsenoside Rg1 + 5 mg/L 6-gingerol resulted in the lowest disease incidence and disease index among all treatments and enhanced seedling growth. The regulation of pathways or metabolites of carbapenem and ginsenoside was further explored. The results provide a preliminary understanding of the interaction between radish and P. brassicae at the metabolism level, as well as the development of measures for preventing clubroot

    Exogenous melatonin mediates radish (Raphanus sativus) and Alternaria brassicae interaction in a dose-dependent manner

    Get PDF
    Radish (Raphanus sativus L.) is an economically important vegetable worldwide, but its sustainable production and breeding are highly threatened by blight disease caused by Alternaria brassicae. Melatonin is an important growth regulator that can influence physiological activities in both plants and microbes and stimulate biotic stress resistance in plants. In this study, 0-1500 μM melatonin was exogenously applied to healthy radish seedlings, in vitro incubated A. brassicae, and diseased radish seedlings to determine the effects of melatonin on host, pathogen, and host-pathogen interaction. At sufficient concentrations (0-500 μM), melatonin enhanced growth and immunity of healthy radish seedlings by improving the function of organelles and promoting the biosynthesis of antioxidant enzymes, chitin, organic acid, and defense proteins. Interestingly, melatonin also improved colony growth, development, and virulence of A. brassicae. A strong dosage-dependent effect of melatonin was observed: 50-500 μM promoted host and pathogen vitality and resistance (500 μM was optimal) and 1500 μM inhibited these processes. Significantly less blight was observed on diseased seedlings treated with 500 μM melatonin, indicating that melatonin more strongly enhanced the growth and immunity of radish than it promoted the development and virulence of A. brassicae at this treatment concentration. These effects of MT were mediated by transcriptional changes of key genes as identified by RNA-seq, Dual RNA-seq, and qRT-PCR. The results from this work provide a theoretical basis for the application of melatonin to protect vegetable crops against pathogens

    In Vitro Techniques for Shipping of Micropropagated Plant Materials

    No full text
    Shipping of in vitro micro-cuttings in tubes or jars is a frequently used method as the plants are more likely to quickly reproduce and comply with quarantine regulations in plant germplasm distribution. However, these containers are fragile during transportation. To diminish the risk associated with the long-distance shipping of in vitro plants, a safe and widely applicable packing and conservation technique based on microplate and slow growth was developed in this study. Potato cultivar ZHB and ginger cultivar G-2 were used to optimize the system with microplates (96 wells), vacuum-sealed packaging, and slow-growth techniques. Under regular culture conditions, packing in vacuum-sealed microplates reduced the survival of ZHB and G-2 micro-cuttings to 85.8% and 20.0%, respectively, and regeneration to 61.8% and 0%, respectively. Reducing the temperature to 10 °C maintained the survival of ZHB and G-2 micro-cuttings in the range of 83.3–100% after 60 days. Exposure to darkness decreased the survival of G-2 and inhibited regrowth. Thus, conservation in darkness at 10 °C is suggested. The effects of iron concentration and plant growth retardants were further assessed. The addition of 1/4 MS medium combined with 100 mg/L chlormequat chloride (CCC) resulted in full survival and growth inhibition of plantlets, without malformation identified. Finally, incubation with 1/4 MS medium supplemented with 100 mg/L CCC in vacuum-sealed microplates at 10 °C in the dark resulted in high survival and suppressed germination. Sweet potato HXS was incubated as well to test the broad-spectrum applications of the technique; 100% survival and 6.7% germination was gained. Morphological indices of released cuttings recovered to control levels after two cycles of subculture in MS medium. A 0.1–0.2% genetic variation was detected by SSR and ISSR, suggesting genetic stability of the conserved samples. Finally, micro-cuttings were safely transported to cities located thousands of kilometers away without package and sample damage. Our results enable easy distribution of in vitro plant germplasms

    Effects of High-Resolution CT Changes on Prognosis Predictability in Acute Respiratory Distress Syndrome with Diffuse Alveolar Damage

    No full text
    Diffuse alveolar damage (DAD) is the pathological hallmark of acute respiratory distress syndrome (ARDS). DAD is independently correlated with higher mortality compared with the absence of DAD. Traction bronchiectasis in areas of ground-glass opacity or consolidation is associated with the late fibroproliferative or fibrotic phase of DAD. This study examined whether the 60-day mortality related to DAD could be predicted using high-resolution computed tomography (HRCT) findings and HRCT scores. A total of 34 patients with DAD who received HRCT within 7 days of ARDS diagnosis were enrolled; they were divided into a 60-day survival group and a nonsurvival group, with 17 patients in each group. Univariate and multivariate binary regression analyses and the receiver operating characteristic curve revealed that only the total percentage of the area with traction bronchiectasis or bronchiolectasis was an independent predictor of 60-day mortality (odds ratio, 1.067; 95% confidence interval (CI), 1.011–1.126) and had favorable predictive performance (area under the curve (AUC): 0.784; 95% CI, 0.621–0.946; cutoff, 21.7). Physiological variables, including age, days from ARDS to HRCT, the sequential organ failure assessment (SOFA) score, the PaO2/fraction of inspired oxygen (FiO2) ratio, dynamic driving pressure, and dynamic mechanical power, were not discriminative between 60-day survival and nonsurvival. In conclusion, the extent of fibroproliferation on HRCT in early ARDS, presented as the total percentage of area with bronchiectasis or bronchiolectasis, is an independent positive predictor with a favorable predictive ability for the 60-day mortality of DAD

    Aging Behavior and Heat Treatment for Room-Temperature CO-Sensitive Pd-SnO2 Composite Nanoceramics

    No full text
    A high long-term stability is crucial for room-temperature gas-sensitive metal oxide semiconductors (MOSs) to find practical applications. A series of Pd-SnO2 mixtures with 2, 5, and 10 wt% Pd separately were prepared from SnO2 and Pd powders. Through pressing and sintering, Pd-SnO2 composite nanoceramics have been successfully prepared from the mixtures, which show responses of 50, 100, and 60 to 0.04% CO-20% O2-N2 at room temperature for samples of 2, 5, and 10 wt% Pd, respectively. The room-temperature CO-sensing characteristics were degraded obviously after dozens of days’ aging for all samples. For samples of 5 wt% Pd, the response to CO was decreased by a factor of 4 after 20 days of aging. Fortunately, some rather mild heat treatments will quite effectively reactivate those aged samples. Heat treatment at 150 °C for 15 min in air tripled the response to CO for a 20 days-aged sample of 5 wt% Pd. It is proposed that the deposition of impurity gases in air on Pd in Pd-SnO2 composite nanoceramics has resulted in the observed aging, while their desorption from Pd through mild heat treatments leads to the reactivation. More studies on aging and reactivation of room-temperature gas sensitive MOSs should be conducted to achieve high long-term stability for room-temperature MOS gas sensors

    Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms

    No full text
    Impressive room-temperature gas-sensing capabilities have been reported for nanomaterials of many metal oxides, including SnO2, ZnO, TiO2, WO3, and Fe2O3, while little attention has been paid to the intrinsic difference among them. Pt-SnO2 and Pt-ZnO composite nanoceramics have been prepared through convenient pressing and sintering. The former shows strong and stable responses to hydrogen in 20% O2-N2 (synthetic air) at room temperature, while the responses to hydrogen in N2 cannot be stabilized in limited times; the latter shows strong and stable responses to hydrogen in N2, while the responses to hydrogen in synthetic air are greatly depressed. Further analyses reveal that for Pt-ZnO, the responses result from the reaction between hydrogen and oxygen chemisorbed on ZnO; while for Pt-SnO2, the responses result from two reactions of hydrogen, one is that with oxygen chemisorbed on SnO2 and the other is hydrogen chemisorption on SnO2. These results reveal two different room-temperature hydrogen-sensing mechanisms among MOXs, which results in highly contrasting room-temperature hydrogen-sensing capabilities attractive for sensing hydrogen in oxygen-contained and oxygen-free environments, separately

    DataSheet_1_Metabonomic profiling of clubroot-susceptible and clubroot-resistant radish and the assessment of disease-resistant metabolites.zip

    No full text
    Plasmodiophora brassicae causes a serious threat to cruciferous plants including radish (Raphanus sativus L.). Knowledge on the pathogenic regularity and molecular mechanism of P. brassicae and radish is limited, especially on the metabolism level. In the present study, clubroot-susceptible and clubroot-resistant cultivars were inoculated with P. brassicae Race 4, root hairs initial infection of resting spores (107 CFU/mL) at 24 h post-inoculation and root galls symptom arising at cortex splitting stage were identified on both cultivars. Root samples of cortex splitting stage of two cultivars were collected and used for untargeted metabonomic analysis. We demonstrated changes in metabolite regulation and pathways during the cortex splitting stage of diseased roots between clubroot-susceptible and clubroot-resistant cultivars using untargeted metabonomic analysis. We identified a larger number of differentially regulated metabolites and heavier metabolite profile changes in the susceptible cultivar than in the resistant counterpart. The metabolites that were differentially regulated in both cultivars were mostly lipids and lipid-like molecules. Significantly regulated metabolites and pathways according to the P value and variable important in projection score were identified. Moreover, four compounds, including ethyl α-D-thioglucopyranoside, imipenem, ginsenoside Rg1, and 6-gingerol, were selected, and their anti-P. brassicae ability and effects on seedling growth were verified on the susceptible cultivar. Except for ethyl α-D-thioglucopyranoside, the remaining could inhibit clubroot development of varing degree. The use of 5 mg/L ginsenoside Rg1 + 5 mg/L 6-gingerol resulted in the lowest disease incidence and disease index among all treatments and enhanced seedling growth. The regulation of pathways or metabolites of carbapenem and ginsenoside was further explored. The results provide a preliminary understanding of the interaction between radish and P. brassicae at the metabolism level, as well as the development of measures for preventing clubroot.</p

    The Association between a 24-Hour Blood Pressure Pattern and Circadian Change in Plasma Aldosterone Concentration for Patients with Aldosterone-Producing Adenoma

    No full text
    The absence of nocturnal blood pressure (BP) decline is associated with hypertensive complications. Data regarding circadian BP patterns in patients with aldosterone-producing adenoma (APA) are limited and equivocal. We evaluated the circadian BP profile in patients with APA and its relationship with the circadian aldosterone rhythm. BP in patients with APA and in those with essential hypertension (EH) were assessed through in-hospital 24-h ambulatory blood pressure monitoring. Over a 24-h in-hospital period, plasma aldosterone levels taken at midnight, 0400, 0800, 1200, 1600, and 2000 h were measured. To evaluate a correlation between BP and hormone rhythm, we included 27 patients with APA (APA group) and 27 patients with EH (EH group). Both groups had similar age, sex ratio, body mass index, duration of hypertension, family history of hypertension, and lipid profiles. The day-night BP differences in both patient groups were similar, whether expressed as absolute values or percentages. The proportions of patients with dipping BP profiles were also comparable (APA group, 5 of 27; EH group, 7 of 27; χ2 = 0.429; P = 0.513). At each time point, APA group plasma aldosterone concentrations (PACs) were higher than those of the EH group. A circadian change in relation to PAC was observed in both groups. A correlation between PAC and BP was statistically nonsignificant in most study patients in either group. Our data indicated that the circadian BP pattern was not associated with a change in PAC levels in patients with APA
    corecore