105,956 research outputs found

    Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions

    Full text link
    We have investigated the effect of particle shape on the eletrorotation (ER) spectrum of living cells suspensions. In particular, we consider coated oblate spheroidal particles and present a theoretical study of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as well as the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cells that abound in the literature. From the theoretical analysis, we find that the cell shape, coating as well as material parameters can change the ER spectrum. We demonstrate good agreement between our theoretical predictions and experimental data on human erthrocytes suspensions.Comment: RevTex; 5 eps figure

    Many-body dipole-induced dipole model for electrorheological fluids

    Full text link
    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipole-induced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield an important correction.Comment: RevTeX, 3 eps figure

    Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media

    No full text

    Nonlinear ac responses of electro-magnetorheological fluids

    Full text link
    We apply a Langevin model to investigate the nonlinear ac responses of electro-magnetorheological (ERMR) fluids under the application of two crossed dc magnetic (z axis) and electric (x axis) fields and a probing ac sinusoidal magnetic field. We focus on the influence of the magnetic fields which can yield nonlinear behaviors inside the system due to the particles with a permanent magnetic dipole moment. Based on a perturbation approach, we extract the harmonics of the magnetic field and orientational magnetization analytically. To this end, we find that the harmonics are sensitive to the degree of anisotropy of the structure as well as the field frequency. Thus, it is possible to real-time monitor the structure transformation of ERMR fluids by detecting the nonlinear ac responses.Comment: 21 pages, 4 figure

    Doppler lidar signal and turbulence study

    Get PDF
    Wind fields were measured with the ground-based NASA/MSFC lidar are compared with the in situ NASA RB-57 aircraft measurements. The mean wind fields, the turbulence intensities, and the turbulence spectra determined from measurements by both systems are in very good agreement. Turbulence intensities and spectra were calculated from the fluctuations with time in the radial wind speed component. The second moment or Doppler frequency spectral width of the lidar measurements was also compared with turbulence intensities measured by the aircraft. These second moments could only be resolved at the very low altitudes (in three range bins). Turbulence intensities estimated from the spectral width data were an order of magnitude higher than those measured by the aircraft. An interesting boundary layer evolved during the progress of the experiment. The breakup of a stable boundary layer resulted in winds blowing in one direction above 600 m msl and in the opposite direction below that level. Both the aircraft and the lidar systems clearly identified this unusual boundary layer flow and showed the identical trends

    Test results of modified electrical charged particle generator for application to fog dispersal

    Get PDF
    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m

    Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

    Full text link
    In this paper, we present a black-box attack against API call based machine learning malware classifiers, focusing on generating adversarial sequences combining API calls and static features (e.g., printable strings) that will be misclassified by the classifier without affecting the malware functionality. We show that this attack is effective against many classifiers due to the transferability principle between RNN variants, feed forward DNNs, and traditional machine learning classifiers such as SVM. We also implement GADGET, a software framework to convert any malware binary to a binary undetected by malware classifiers, using the proposed attack, without access to the malware source code.Comment: Accepted as a conference paper at RAID 201

    Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field

    Full text link
    We report the first experimental observation of a characteristic nonlinear threshold behavior from dc dynamical response as an evidence for a Wigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. However, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to a quantum process
    corecore