77,206 research outputs found
Large-Eddy Simulations of Flow and Heat Transfer in Complex Three-Dimensional Multilouvered Fins
The paper describes the computational procedure and
results from large-eddy simulations in a complex three-dimensional
louver geometry. The three-dimensionality in the
louver geometry occurs along the height of the fin, where the
angled louver transitions to the flat landing and joins with the
tube surface. The transition region is characterized by a swept
leading edge and decreasing flow area between louvers.
Preliminary results show a high energy compact vortex jet
forming in this region. The jet forms in the vicinity of the louver
junction with the flat landing and is drawn under the louver in
the transition region. Its interaction with the surface of the
louver produces vorticity of the opposite sign, which aids in
augmenting heat transfer on the louver surface. The top surface
of the louver in the transition region experiences large velocities
in the vicinity of the surface and exhibits higher heat transfer
coefficients than the bottom surface.Air Conditioning and Refrigeration Project 9
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems
We study the quantum-jump-based feedback control on the entanglement shared
between two qubits with one of them subject to decoherence, while the other
qubit is under the control. This situation is very relevant to a quantum system
consisting of nuclear and electron spins in solid states. The possibility to
prolong the coherence time of the dissipative qubit is also explored. Numerical
simulations show that the quantum-jump-based feedback control can improve the
entanglement between the qubits and prolong the coherence time for the qubit
subject directly to decoherence
Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems
We have fabricated doubly clamped beams from GaAs/AlGaAs quantum-well heterostructures containing a high-mobility two-dimensional electron gas (2DEG). Applying an rf drive to in-plane side gates excites the beam's mechanical resonance through a dipole–dipole mechanism. Sensitive high-frequency displacement transduction is achieved by measuring the ac emf developed across the 2DEG in the presence of a constant dc sense current. The high mobility of the incorporated 2DEG provides low-noise, low-power, and high-gain electromechanical displacement sensing through combined piezoelectric and piezoresistive mechanisms
- …