111 research outputs found

    Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development

    Get PDF
    Background: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed

    A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails

    Get PDF
    Background: Cleidocranial dysplasia (CCD) is a dominantly inherited disease characterized by hypoplastic or absent clavicles, large fontanels, dental dysplasia, and delayed skeletal development. The purpose of this study is to investigate the genetic basis of Chinese family with CCD. Methods: Here, a large Chinese family with CCD and hyperplastic nails was recruited. The clinical features displayed a significant intrafamilial variation. We sequenced the coding region of the RUNX2 gene for the mutation and phenotype analysis. Results: The family carries a c. T407C (p.L136P) mutation in the DNA- and CBF beta-binding Runt domain of RUNX2. Based on the crystal structure, we predict this novel missense mutation is likely to disrupt DNA binding by RUNX2, and at least locally affect the Runt domain structure. Conclusion: A novel missense mutation was identified in a large Chinese family with CCD with hyperplastic nails. This report further extends the mutation spectrum and clinical features of CCD. The identification of this mutation will facilitate prenatal diagnosis and preimplantation genetic diagnosis

    Novel Evolved Immunoglobulin (Ig)-Binding Molecules Enhance the Detection of IgM against Hepatitis C Virus

    Get PDF
    Detection of specific antibodies against hepatitis C virus (HCV) is the most widely available test for viral diagnosis and monitoring of HCV infections. However, narrowing the serologic window of anti-HCV detection by enhancing anti-HCV IgM detection has remained to be a problem. Herein, we used LD5, a novel evolved immunoglobulin-binding molecule (NEIBM) with a high affinity for IgM, to develop a new anti-HCV enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase-labeled LD5 (HRP-LD5) as the conjugated enzyme complex. The HRP-LD5 assay showed detection efficacy that is comparable with two kinds of domestic diagnostic kits and the Abbott 3.0 kit when tested against the national reference panel. Moreover, the HRP-LD5 assay showed a higher detection rate (55.9%, 95% confidence intervals (95% CI) 0.489, 0.629) than that of a domestic diagnostic ELISA kit (Chang Zheng) (53.3%, 95% CI 0.463, 0.603) in 195 hemodialysis patient serum samples. Five serum samples that were positive using the HRP-LD5 assay and negative with the conventional anti-HCV diagnostic ELISA kits were all positive for HCV RNA, and 4 of them had detectable antibodies when tested with the established anti-HCV IgM assay. An IgM confirmation study revealed the IgM reaction nature of these five serum samples. These results demonstrate that HRP-LD5 improved anti-HCV detection by enhancing the detection of anti-HCV IgM, which may have potential value for the early diagnosis and screening of hepatitis C and other infectious diseases

    Comparative Genomics of Mycoplasma: Analysis of Conserved Essential Genes and Diversity of the Pan-Genome

    Get PDF
    Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages

    Trivalent SARS-CoV-2 S1 Subunit Protein Vaccination Induces Broad Humoral Responses in BALB/c Mice

    No full text
    This paper presents a novel approach for improving the efficacy of COVID-19 vaccines against emergent SARS-CoV-2 variants. We have evaluated the immunogenicity of unadjuvanted wild-type (WU S1-RS09cg) and variant-specific (Delta S1-RS09cg and OM S1-RS09cg) S1 subunit protein vaccines delivered either as a monovalent or a trivalent antigen in BALB/c mice. Our results show that a trivalent approach induced a broader humoral response with more coverage against antigenically distinct variants, especially when compared to monovalent Omicron-specific S1. This trivalent approach was also found to have increased or equivalent ACE2 binding inhibition, and increased S1 IgG endpoint titer at early timepoints, against SARS-CoV-2 spike variants when compared monovalent Wuhan, Delta, or Omicron S1. Our results demonstrate the utility of protein subunit vaccines against COVID-19 and provide insights into the impact of variant-specific COVID-19 vaccine approaches on the immune response in the current SARS-CoV-2 variant landscape. Particularly, our study provides insight into effects of further increasing valency of currently approved SARS-CoV-2 vaccines, a promising approach for improving protection to curtail emerging viral variants

    Trivalent SARS-CoV-2 S1 Subunit Protein Vaccination Induces Broad Humoral Responses in BALB/c Mice

    No full text
    This paper presents a novel approach for improving the efficacy of COVID-19 vaccines against emergent SARS-CoV-2 variants. We have evaluated the immunogenicity of unadjuvanted wild-type (WU S1-RS09cg) and variant-specific (Delta S1-RS09cg and OM S1-RS09cg) S1 subunit protein vaccines delivered either as a monovalent or a trivalent antigen in BALB/c mice. Our results show that a trivalent approach induced a broader humoral response with more coverage against antigenically distinct variants, especially when compared to monovalent Omicron-specific S1. This trivalent approach was also found to have increased or equivalent ACE2 binding inhibition, and increased S1 IgG endpoint titer at early timepoints, against SARS-CoV-2 spike variants when compared monovalent Wuhan, Delta, or Omicron S1. Our results demonstrate the utility of protein subunit vaccines against COVID-19 and provide insights into the impact of variant-specific COVID-19 vaccine approaches on the immune response in the current SARS-CoV-2 variant landscape. Particularly, our study provides insight into effects of further increasing valency of currently approved SARS-CoV-2 vaccines, a promising approach for improving protection to curtail emerging viral variants
    • …
    corecore