32 research outputs found

    Effects of icariin and quercetin on high glucose-induced neuronal cell apoptosis

    Get PDF
    Purpose: To study the effects of icariin and quercetin on cell apoptotic changes in neurons induced by elevated glucose condition, and the  mechanism involved. Methods: Neonatal male Sprague Dawley rats (n = 48) weighing 5 – 7 g were used. Neuronal cells were isolated from rat hippocampus and cultured after purification. The cells were randomly assigned to six groups: control, high glucose, icariin, quercetin, serine/threonine-specific protein kinase (Akt) inhibitor, and Akt agonist groups. The Akt inhibitor and agonist used in this study were MK-22062hci and SC79, respectively. The influence of icariin and quercetin on neuronal apoptotic changes were determined flow cytometrically, while their effects on levels of expression of Akt, p-Akt, bax and bcl-2 were determined with Western blotting. Results: Treatment with icariin or quercetin significantly inhibited apoptosis induced by high glucose. The concentrations of Akt, p-Akt, and bcl-2 proteins were markedly upregulated in high glucose group, relative to control (p < 0.05). The corresponding expression of bax was significantly down-regulated in high glucose group, relative to control (p < 0.05). Treatment with icariin or quercetin, or their agonists reversed high glucose-mediated alterations in these protein levels (p < 0.05). Conclusion: Icariin and quercetin inhibit neuronal cell apoptosis induced by high glucose through upregulation of bcl-2 expression and down- regulations of bax expression and Akt-induced protein phosphorylation. Thus, Icariin and quercetin possess potential benefits for the treatment of neurological diseases. Keywords: Apoptosis, High glucose condition, Hippocampal neurons, Icariin, Querceti

    Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method

    No full text
    In this work, a loofah sponge was used as the solid carbon source and the carrier in a biofilm reactor. Simultaneous nitrification and denitrification (SND) technology was used to achieve nitrogen removal in low-carbon municipal wastewater in a sequencing batch biofilm reactor (SBBR). At room temperature, the effects of filling ratio, dissolved oxygen (DO), pH, C/N(CODCr/TN), and aeration time on the removal of nitrogen were systematically studied. In addition, the removal efficiency of total nitrogen (TN) was used as the evaluation index in response surface models (RSM) for optimization of nitrogen removal. The results showed that DO, pH, and aeration time affected nitrogen removal significantly. Therefore, DO, pH, and aeration time were used as the independent variables in RSM. The optimum conditions for nitrogen removal were found to be as follows in RSM: DO = 4.09 mg/L, pH = 7.58, aeration time = 10.47 h. Under the optimum conditions, the maximum TN removal efficiency reached 86.27%. The results also demonstrated that the deviation between the experimental and predicted TN removal efficiency was only 0.58%, the predicted model was reliable for future application

    Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells.

    Get PDF
    Dengue virus (DENV) is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR) has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses.By RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN)-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs), interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC) challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R), but not of a mutant lacking dsRNA binding activity (K64E) or the double mutant (K64EK296R), reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production.PKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC), and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments

    Investigation of separated flow around a curved air intake

    No full text

    Lurasidone versus Quetiapine for Cognitive Impairments in Young Patients with Bipolar Depression: A Randomized, Controlled Study

    No full text
    The clinical efficacy of lurasidone and quetiapine, two commonly prescribed atypical antipsychotics for bipolar depression, has been inadequately studied in young patients. In this randomized and controlled study, we aimed to compare the effects of these two drugs on cognitive function, emotional status, and metabolic profiles in children and adolescents with bipolar depression. We recruited young participants (aged 10–17 years old) with a DSM-5 diagnosis of bipolar disorder during a depressive episode, who were then randomly assigned to two groups and treated with flexible doses of lurasidone (60 to 120 mg/day) or quetiapine (300 to 600 mg/day) for consecutive 8 weeks, respectively. All the participants were clinically evaluated on cognitive function using the THINC-it instrument at baseline and week 8, and emotional status was assessed at baseline and the end of week 2, 4, and 8. Additionally, the changes in weight and serum metabolic profiles (triglyceride, cholesterol, and fasting blood glucose) during the trial were also analyzed. In results, a total of 71 patients were randomly assigned to the lurasidone group (n = 35) or the quetiapine group (n = 36), of which 31 patients completed the whole treatment course. After an 8-week follow-up, participants in the lurasidone group showed better performance in the Symbol Check Reaction and Accuracy Tests, when compared to those in the quetiapine group. No inter-group difference was observed in the depression scores, response rate, or remission rate throughout the trial. In addition, there was no significant difference in serum metabolic profiles between the lurasidone group and the quetiapine group, including triglyceride level, cholesterol level, and fasting blood glucose level. However, the quetiapine group presented a more apparent change in body weight than the lurasidone group. In conclusion, the present study provided preliminary evidence that quetiapine and lurasidone had an equivalent anti-depressive effect, and lurasidone appeared to be superior to quetiapine in improving the cognitive function of young patients with bipolar depression
    corecore