874 research outputs found

    Effects of epidural compression on stellate neurons and thalamocortical afferent fibers in the rat primary somatosensory cortex

    Get PDF
    A number of neurological disorders such as epidural hematoma can cause compression of cerebral cortex. We here tested the hypothesis that sustained compression of primary somatosensory cortex may affect stellate neurons and thalamocortical afferent (TCA) fibers. A rat model with barrel cortex subjected to bead epidural compression was used. Golgi‑Cox staining analyses showed the shrinkage of dendritic arbors and the stripping of dendritic spines of stellate neurons for at least 3 months post‑lesion. Anterograde tracing analyses exhibited a progressive decline of TCA fiber density in barrel field for 6 months post‑lesion. Due to the abrupt decrease of TCA fiber density at 3 days after compression, we further used electron microscopy to investigate the ultrastructure of TCA fibers at this time. Some TCA fiber terminal profiles with dissolved or darkened mitochondria and fewer synaptic vesicles were distorted and broken. Furthermore, the disruption of mitochondria and myelin sheath was observed in some myelinated TCA fibers. In addition, expressions of oxidative markers 3‑nitrotyrosine and 4‑hydroxynonenal were elevated in barrel field post‑lesion. Treatment of antioxidant ascorbic acid or apocynin was able to reverse the increase of oxidative stress and the decline of TCA fiber density, rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons post‑lesion. Together, these results indicate that sustained epidural compression of primary somatosensory cortex affects the TCA fibers and the dendrites of stellate neurons for a prolonged period. In addition, oxidative stress is responsible for the reduction of TCA fiber density in barrels rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons

    Dichlorido{N′-[(pyridin-2-yl)methyl­idene-κN]acetohydrazide-κ2 N′,O}copper(II)

    Get PDF
    In the title compound, [CuCl2(C8H9N3O)], the CuII atom has a distorted square-pyramidal CuCl2N2O coordination geometry. The tridentate acetohydrazide ligand occupies three basal positions, the fourth basal position being defined by a chloride anion at a distance of 2.2116 (6) Å. The second chloride anion is in the apical position and forms a longer Cu—Cl distance of 2.4655 (7) Å. Inter­molecular N—H⋯Cl hydrogen bonds are present in the crystal, leading to the formation of chains along [10]

    Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors

    Get PDF
    AbstractDuring development, the semaphorin family of guidance molecules is required for proper formation of the sympathetic nervous system. Plexins are receptors that mediate semaphorin signaling, but how plexins function during sympathetic development is not fully understood. Using phenotypic analyses of mutant mice in vivo, expression pattern studies, and in vitro assays, we show that plexin-A3 and plexin-A4 are essential for normal sympathetic development. This study confirms our previous in vitro findings that the two plexins differentially regulate the guidance of sympathetic axons. In addition, we find that semaphorin signaling through plexin-A3 and plexin-A4 restricts the migration of sympathetic neurons, but these two plexins function redundantly since migration defects are only observed in plexin-A3/-A4 double mutants. Surprisingly, our analysis also indicates that plexin-A3 and plexin-A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Immunoprecipitation studies suggest that these two plexins independently mediate secreted semaphorin signaling. Thus, plexin-A3 and plexin-A4 are expressed in newly-differentiated sympathetic neurons, but not their neural crest precursors. They function cooperatively to regulate the migration of sympathetic neurons and then differentially to guide the sympathetic axons

    Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1.

    Get PDF
    Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1β by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs

    Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo

    Get PDF
    We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin) using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) levels productions were detected. Western blotting revealed that cinnamic aldehyde blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), and IκBα, significantly. In the anti-inflammatory test, cinnamic aldehyde decreased the paw edema after Carr administration, and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated cinnamic aldehyde attenuated the malondialdehyde (MDA) level and myeloperoxidase (MPO) activity in the edema paw after Carr injection. Cinnamic aldehyde decreased the NO, TNF-α, and PGE2 levels on the serum level after Carr injection. Western blotting revealed that cinnamic aldehyde decreased Carr-induced iNOS, COX-2, and NF-κB expressions in the edema paw. These findings demonstrated that cinnamic aldehyde has excellent anti-inflammatory activities and thus has great potential to be used as a source for natural health products

    Phyllanthus urinaria Induces Apoptosis in Human Osteosarcoma 143B Cells via Activation of Fas/FasL- and Mitochondria-Mediated Pathways

    Get PDF
    Phyllanthus urinaria (P. urinaria), in this study, was used for the treatment of human osteosarcoma cells, which is one of the tough malignancies with few therapeutic modalities. Herein, we demonstrated that P. urinaria inhibited human osteosarcoma 143B cells growth through an apoptotic extrinsic pathway to activate Fas receptor/ligand expression. Both intracellular and mitochondrial reactive oxygen species were increased to lead to alterations of mitochondrial membrane permeability and Bcl-2 family including upregulation of Bid, tBid, and Bax and downregulation of Bcl-2. P. urinaria triggered an intrinsic pathway and amplified the caspase cascade to induce apoptosis of 143B cells. However, upregulation of both intracellular and mitochondrial reactive oxygen species and the sequential membrane potential change were less pronounced in the mitochondrial respiratory-defective 143Bρ0 cells compared with the 143B cells. This study offers the evidence that mitochondria are essential for the anticancer mechanism induced by P. urinaria through both extrinsic and intrinsic pathways

    Antinociceptive Activities and the Mechanisms of Anti-Inflammation of Asiatic Acid in Mice

    Get PDF
    Asiatic acid (AA), a pentacyclic triterpene compound in the medicinal plant Centella asiatica, was evaluated for antinociceptive and anti-inflammatory effects. Treatment of male ICR mice with AA significantly inhibited the numbers of acetic acid-induced writhing responses and the formalin-induced pain in the late phase. In the anti-inflammatory test, AA decreased the paw edema at the 4th and 5th h after λ-carrageenan (Carr) administration and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the liver tissue. AA decreased the nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels on serum level at the 5th h after Carr injection. Western blotting revealed that AA decreased Carr-induced inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and nuclear factor-κB (NF-κB) expressions at the 5th h in the edema paw. An intraperitoneal (i.p.) injection treatment with AA also diminished neutrophil infiltration into sites of inflammation as did indomethacin (Indo). The anti-inflammatory mechanisms of AA might be related to the decrease in the level of MDA, iNOS, COX-2, and NF-κB in the edema paw via increasing the activities of CAT, SOD, and GPx in the liver
    corecore