3,522 research outputs found
Deterministic Dense Coding and Faithful Teleportation with Multipartite Graph States
We proposed novel schemes to perform the deterministic dense coding and
faithful teleportation with multipartite graph states. We also find the
sufficient and necessary condition of a viable graph state for the proposed
scheme. That is, for the associated graph, the reduced adjacency matrix of the
Tanner-type subgraph between senders and receivers should be invertible.Comment: 10 pages, 1 figure;v2. discussions improve
Recommended from our members
Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve.
BackgroundNeurovascular unit restoration is crucial for nerve regeneration, especially in critical gaps of injured peripheral nerve. Multipotent vascular stem cells (MVSCs) harvested from an adult blood vessel are involved in vascular remodeling; however, the therapeutic benefit for nerve regeneration is not clear.MethodsMVSCs were isolated from rats expressing green fluorescence protein (GFP), expanded, mixed with Matrigel matrix, and loaded into the nerve conduits. A nerve autograft or a nerve conduit (with acellular matrigel or MVSCs in matrigel) was used to bridge a transected sciatic nerve (10-mm critical gap) in rats. The functional motor recovery and cell fate in the regenerated nerve were investigated to understand the therapeutic benefit.ResultsMVSCs expressed markers such as Sox 17 and Sox10 and could differentiate into neural cells in vitro. One month following MVSC transplantation, the compound muscle action potential (CMAP) significantly increased as compared to the acellular group. MVSCs facilitated the recruitment of Schwann cell to regenerated axons. The transplanted cells, traced by GFP, differentiated into perineurial cells around the bundles of regenerated myelinated axons. In addition, MVSCs enhanced tight junction formation as a part of the blood-nerve barrier (BNB). Furthermore, MVSCs differentiated into perivascular cells and enhanced microvessel formation within regenerated neurovascular bundles.ConclusionsIn rats with peripheral nerve injuries, the transplantation of MVSCs into the nerve conduits improved the recovery of neuromuscular function; MVSCs differentiated into perineural cells and perivascular cells and enhanced the formation of tight junctions in perineural BNB. This study demonstrates the in vivo therapeutic benefit of adult MVSCs for peripheral nerve regeneration and provides insight into the role of MVSCs in BNB regeneration
Multipartite Entanglement Measures and Quantum Criticality from Matrix and Tensor Product States
We compute the multipartite entanglement measures such as the global
entanglement of various one- and two-dimensional quantum systems to probe the
quantum criticality based on the matrix and tensor product states (MPSs/TPSs).
We use infinite time-evolving block decimation (iTEBD) method to find the
ground states numerically in the form of MPSs/TPSs, and then evaluate their
entanglement measures by the method of tensor renormalization group (TRG). We
find these entanglement measures can characterize the quantum phase transitions
by their derivative discontinuity right at the critical points in all models
considered here. We also comment on the scaling behaviors of the entanglement
measures by the ideas of quantum state renormalization group transformations.Comment: 22 pages, 11 figure
Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.
Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed
Symmetry Protected Quantum State Renormalization
Symmetry protected topological (SPT) phases with gapless edge excitations
have been shown to exist in principle in strongly interacting bosonic/fermionic
systems and it is highly desirable to find practical systems to realize such
phases through numerical calculation. A central question to be addressed is how
to determine the SPT order in the system given the numerical simulation result
while no local order parameter can be measured to distinguish the phases from a
trivial one. In the tensor network approach to simulate strongly interacting
systems, the quantum state renormalization algorithm has been demonstrated to
be effective in identifying the intrinsic topological orders. Here we show that
a modified algorithm can identify SPT orders by extracting the fixed point
entanglement pattern in the ground state wave function which is essential for
the existence of SPT order. The key to this approach is to add symmetry
protection to the quantum state renormalization process and we demonstrate the
effectiveness of this algorithm with the example of AKLT states in both 1D and
2D
Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Slab Medium
[[abstract]]The application of four techniques for the shape reconstruction of a 2-D metallic cylinder buried in dielectric slab medium by measured the cattered fields outside is studied in the paper. The finite-difference time-domain (FDTD) technique is employed for electromagnetic analyses for both the forward and inverse scattering problems, while the shape reconstruction problem is transformed into optimization one during the course of inverse scattering. Then, four techniques including asynchronous particle swarm optimization (APSO), PSO, dynamic differential evolution (DDE) and self-adaptive DDE (SADDE) are applied to reconstruct the location and shape of the 2-Dmetallic cylinder for comparative purposes. The statistical performances of these algorithms are compared. The results show that SADDE outperforms PSO, APSO and DDE in terms of the ability of exploring the optima. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子
SOCIAL COGNITION AND THE EFFECT OF PRODUCT QUALITY ON ONLINE REPURCHASE INTENTION
An electronic commerce marketing channel is fully mediated by information technology, creating information asymmetry (i.e., limited information). Such asymmetry may impede consumers’ ability to effectively assess certain types of products, thus creating challenges for online sellers. Signaling theory can aid in the understanding of how extrinsic cues—signals—can be used by sellers to convey product quality information to consumers, reducing uncertainty and facilitating a purchase or exchange. This study proposes a model to investigate website quality as a potential signal of product quality and consider the moderating effects of product information asymmetries and signal credibility. The study also finds that perceived value and cognitive lock-in can predict consumer purchase intentions. Furthermore, personalized product recommendation (PPR) services offered by online retailers are found to influence consumer store loyalty. The results indicate that website quality influences consumers’ perceptions of product quality, and affects online purchase intentions. Website quality is found to have a greater influence on perceived product quality when consumers have higher information asymmetry. Signal credibility is found to strengthen the relationship between website quality and product quality perceptions for a high quality website. The implications of cognitive lock-in and product cues for increasing purchase intentions are discussed. Retailer learning reflected in higher quality PPRs is associated with both lower product screening cost and higher product evaluation cost. We also discuss which PPRs influence consumer repurchase intentions in electronic markets
- …