42 research outputs found

    Research on mechanical properties of high-performance cable-in-conduit conductors with different design

    Get PDF
    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak fusion reactor under preliminary design, where the toroidal field (TF) coil has been designed to create a magnetic field of over 14.3 T. The TF conductors need to operate stably at 14.3 T, requiring the exclusion of conductor performance degradation from thermal and electromagnetic loading as much as possible. The maximum Lorentz force will reach about 1200 kN m-1, which is much higher than that of ITER conductors. In previous research, performance degradation was found during electromagnetic cycles and warm-up-cool-down cycles. A correlation was found between a conductor's degradation and its mechanical properties. According to the analysis, a conductor with a short twist pitch (STP) scheme or a copper wound superconducting strand (CWS) design has large stiffness, which enables significant performance improvement in terms of the electromagnetic and thermal load cycling. The cable stiffness is closely related to the number of inter-strand contact points inside the conductor. Based on this concept, four types of prototype cable-in-conduit conductor samples with STP and CWS design were manufactured. The number of inter-strand contact points was analyzed, and mechanical transverse load testing was performed at 77 K. The results show that the conductors with more contact points per unit length exhibit a higher stiffness. However, the cable designed with high cable stiffness caused strand indentation, which was also investigated. In this paper, the conductor design and experimental results are discussed and compared with ITER TF and central solenoid conductors.</p

    Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting

    Full text link
    The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured “all-surface” Fe-doped cobalt phosphide nanoboxes (Co@CoFe–P NBs) as alternative electrocatalysts for industrial-scale applications. Operando Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our operando analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P–Co–O–Fe–P configurations with low-valence metal centers (M0/M+) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these in situ reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P–Co–O–Fe–P configurations into oxygen-bridged, high-valence CoIV–O–FeIV moieties as true active intermediates. In sharp contrast, the formation of such CoIII/IV–O–FeIII/IV moieties in Co–FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. Ex situ studies of the as-synthesized reference cobalt sulfides (Co–S), Fe doped cobalt selenides (Co@CoFe–Se), and Fe doped cobalt tellurides (Co@CoFe–Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage

    Sobol′’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Hydrology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hydrology Vol. 480 (2013), DOI: 10.1016/j.jhydrol.2012.12.005This paper aims to provide an enhanced understanding of the parameter sensitivities of the Soil and Water Assessment Tool (SWAT) using a variance-based global sensitivity analysis, i.e., Sobol′’s method. The Yichun River Basin, China, is used as a case study, and the sensitivity of the SWAT parameters is analyzed under typical dry, normal and wet years, respectively. To reduce the number of model parameters, some spatial model parameters are grouped in terms of data availability and multipliers are then applied to parameter groups, reflecting spatial variation in the distributed SWAT model. The SWAT model performance is represented using two statistical metrics – Root Mean Square Error (RMSE) and Nash–Sutcliffe Efficiency (NSE) and two hydrological metrics – RunOff Coefficient Error (ROCE) and Slope of the Flow Duration Curve Error (SFDCE). The analysis reveals the individual effects of each parameter and its interactions with other parameters. Parameter interactions contribute to a significant portion of the variation in all metrics considered under moderate and wet years. In particular, the variation in the two hydrological metrics is dominated by the interactions, illustrating the necessity of choosing a global sensitivity analysis method that is able to consider interactions in the SWAT model identification process. In the dry year, however, the individual effects control the variation in the other three metrics except SFDCE. Further, the two statistical metrics fail to identify the SWAT parameters that control the flashiness (i.e., variability of mid-flows) and overall water balance. Overall, the results obtained from the global sensitivity analysis provide an in-depth understanding of the underlying hydrological processes under different metrics and climatic conditions in the case study catchment.National Natural Science Foundation of Chin

    ESTIMATING UNIVARIATE DISTRIBUTIONS VIA RELATIVE ENTROPY MINIMIZATION: CASE STUDIES ON FINANCIAL AND ECONOMIC DATA

    No full text
    We use minimum relative entropy (MRE) methods to estimate univariate probability density functions for a varied set of financial and economic variables, including S&P500 index returns, individual stock returns, power price returns and a number of housing-related economic variables. Some variables have fat tail distributions, others have finite support. Some variables have point masses in their distributions and others have multimodal distributions. We indicate specifically how the MRE approach can be tailored to the stylized facts of the variables that we consider and benchmark the MRE approach against alternative approaches. We find, for a number of variables, that the MRE approach outperforms the benchmark methods.Kullback-Leibler relative entropy, maximum likelihood, probability distribution, fat-tailed, point mass, stock return distribution, stock index return distribution, financial data, economic data, California Housing Data
    corecore