111 research outputs found

    Study on Fatigue Characteristics of Concrete Sleepers with Porous Basalt as the Aggregate

    Get PDF
    Due to the shortage of local materials, porous basalt was used as the coarse aggregate in the prefabrication of sleepers for the Mombasa-Nairobi Railway in Kenya. To study their fatigue characteristics, the sleepers were measured under fatigue loading for their local strain, overall deformation and crack initiation. The methods used include the traditional strain measurement, the sleeper deflection measurement and the 3D optical strain measurement. To be more specific, the traditional strain measurement method was employed to compare the strain-load relation of the sleepers under different cyclic loading times. Deflection variations of the sleepers were taken into consideration to analyze sleeper local defects and the variation law of the constitutive relation for concrete. And the 3D optical non-contact strain measurement method was adopted to monitor the sleeper crack initiation and growth process under fatigue loading and analyze the crack growth law

    Simulation and Test of Lateral Ballast Resistance to 1435 mm/1000 mm Dual-Gauge Sleepers

    Get PDF
    The stability of a 1000 mm/1435 mm dual-gauge track is lower than that of a single-gauge track. One of the important factors that affects the stability of the track is the lateral resistance of the track bed. We have established a discrete element simulation model of the dual-gauge sleeper-track bed in PFC to analyse the characteristics of the lateral resistance of the 1000 mm/1435 mm dual-gauge sleeper. With China Type IIIc sleepers as the control group, we carried out the lateral resistance test for the full-scale sleeper model under the same conditions. The research results indicate that the most effective way to increase the lateral resistance of the dual-gauge track bed is to increase the end surface area and bottom area of the sleeper. The application of adjacent sleepers is an effective way to increase the lateral resistance of the track bed further. The research results gained from this study can be used to guide the design of dual-gauge sleepers

    Robustness of interdependent networks under targeted attack

    Full text link
    When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent networks under targeted attack on high or low degree nodes. We introduce a general technique and show that the {\it targeted-attack} problem in interdependent networks can be mapped to the {\it random-attack} problem in a transformed pair of interdependent networks. We find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale free (SF) networks where the percolation threshold pc=0p_c=0, coupled SF networks are significantly more vulnerable with pcp_c significantly larger than zero. The result implies that interdependent networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful to significantly improve robustness of single networks.Comment: 11 pages, 2 figure

    Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model

    Get PDF
    To predict regional-scale winter wheat yield, we developed a crop model and data assimilation framework that assimilated leaf area index (LAI) derived from Landsat TM and MODIS data into the WOFOST crop growth model. We measured LAI during seven phenological phases in two agricultural cities in China’s Hebei Province. To reduce cloud contamination, we applied Savitzky–Golay (S–G) filtering to the MODIS LAI products to obtain a filtered LAI. We then regressed field-measured LAI on Landsat TM vegetation indices to derive multi-temporal TM LAIs. We developed a nonlinear method to adjust LAI by accounting for the scale mismatch between the remotely sensed data and the model’s state variables. The TM LAI and scale-adjusted LAI datasets were assimilated into the WOFOST model to allow evaluation of the yield estimation accuracy. We constructed a four-dimensional variational data assimilation (4DVar) cost function to account for the observations and model errors during key phenological stages. We used the shuffled complex evolution–University of Arizona algorithm to minimize the 4DVar cost function between the remotely sensed and modeled LAI and to optimize two important WOFOST parameters. Finally, we simulated winter wheat yield in a 1-km grid for cells with at least 50% of their area occupied by winter wheat using the optimized WOFOST, and aggregated the results at a regional scale. The scale adjustment substantially improved the accuracy of regional wheat yield predictions (R2 = 0.48; RMSE= 151.92 kg ha−1) compared with the unassimilated results (R2 = 0.23;RMSE= 373.6 kg ha−1) and the TM LAI results (R2 = 0.27; RMSE= 191.6 kg ha−1). Thus, the assimilation performance depends strongly on the LAI retrieval accuracy and the scaling correction. Our research provides a scheme to employ remotely sensed data, ground-measured data, and a crop growth model to improve regional crop yield estimates

    A method for estimating yield of maize inbred lines by assimilating WOFOST model with Sentinel-2 satellite data

    Get PDF
    Maize is the most widely planted food crop in China, and maize inbred lines, as the basis of maize genetic breeding and seed breeding, have a significant impact on China’s seed security and food safety. Satellite remote sensing technology has been widely used for growth monitoring and yield estimation of various crops, but it is still doubtful whether the existing remote sensing monitoring means can distinguish the growth difference between maize inbred lines and hybrids and accurately estimate the yield of maize inbred lines. This paper explores a method for estimating the yield of maize inbred lines based on the assimilation of crop models and remote sensing data, initially solves the problem. At first, this paper analyzed the WOFOST(World Food Studies)model parameter sensitivity and used the MCMC(Markov Chain Monte Carlo) method to calibrate the sensitive parameters to obtain the parameter set of maize inbred lines differing from common hybrid maize; then the vegetation indices were selected to establish an empirical model with the measured LAI(Leaf Area Index) at three key development stages to obtain the remotely sensed estimated LAI; finally, the yield of maize inbred lines in the study area was estimated and mapped pixel by pixel using the EnKF(Ensemble Kalman Filter) data assimilation algorithm. Also, this paper compares a method of assimilation by setting a single parameter. Instead of the WOFOST parameter optimization process, a parameter representing the growth weakness of the inbred lines was set in WOFOST to distinguish the inbred lines from the hybrids. The results showed that the yield estimated by the two methods compared with the field measured yield data had R2: 0.56 and 0.18, and RMSE: 684.90 Kg/Ha and 949.95 Kg/Ha, respectively, which proved that the crop growth model of maize inbred lines established in this study combined with the data assimilation method could initially achieve the growth monitoring and yield estimation of maize inbred lines

    Joint retrieval of growing season corn canopy LAI and leaf chlorophyll content by fusing Sentinel-2 and MODIS images

    Get PDF
    Continuous and accurate estimates of crop canopy leaf area index (LAI) and chlorophyll content are of great importance for crop growth monitoring. These estimates can be useful for precision agricultural management and agricultural planning. Our objectives were to investigate the joint retrieval of corn canopy LAI and chlorophyll content using filtered reflectances from Sentinel-2 and MODIS data acquired during the corn growing season, which, being generally hot and rainy, results in few cloud-free Sentinel-2 images. In addition, the retrieved time series of LAI and chlorophyll content results were used to monitor the corn growth behavior in the study area. Our results showed that: (1) the joint retrieval of LAI and chlorophyll content using the proposed joint probability distribution method improved the estimation accuracy of both corn canopy LAI and chlorophyll content. Corn canopy LAI and chlorophyll content were retrieved jointly and accurately using the PROSAIL model with fused Kalman filtered (KF) reflectance images. The relation between retrieved and field measured LAI and chlorophyll content of four corn-growing stages had a coefficient of determination (R2) of about 0.6, and root mean square errors (RMSEs) ranges of mainly 0.1-0.2 and 0.0-0.3, respectively. (2) Kalman filtering is a good way to produce continuous high-resolution reflectance images by synthesizing Sentinel-2 and MODIS reflectances. The correlation between fused KF and Sentinel-2 reflectances had an R2 value of 0.98 and RMSE of 0.0133, and the correlation between KF and field-measured reflectances had an R2 value of 0.8598 and RMSE of 0.0404. (3) The derived continuous KF reflectances captured the crop behavior well. Our analysis showed that the LAI increased from day of year (DOY) 181 (trefoil stage) to DOY 236 (filling stage), and then increased continuously until harvest, while the chlorophyll content first also increased from DOY 181 to DOY 236, and then remained stable until harvest. These results revealed that the jointly retrieved continuous LAI and chlorophyll content could be used to monitor corn growth conditions

    Location, biophysical and agronomic parameters for croplands in northern Ghana

    Get PDF
    Smallholder agriculture is the bedrock of the food production system in sub-Saharan Africa. Yields in Africa are significantly below potentially attainable yields for a number of reasons, and they are particularly vulnerable to climate change impacts. Monitoring of these highly heterogeneous landscapes is needed to respond to farmer needs, develop an appropriate policy and ensure food security, and Earth observation (EO) must be part of these efforts, but there is a lack of ground data for developing and testing EO methods in western Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical parameters and (iii) crop yield, and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type was surveyed in more than 1800 fields in three different agroecological zones across Ghana (the Guinea Savannah, Transition and Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated measurements of leaf area index (LAI) and leaf chlorophyll concentration were made on a set of 56 maize fields. Yield and biomass were also sampled at harvesting. LAI in the sampled fields ranged from 0.1 to 5.24 m2 m−2, whereas leaf chlorophyll concentration varied between 6.1 and 60.3 µg cm−2. Yield varied between 190 and 4580 kg ha−1, with an important within-field variability (average per-field standard deviation 381 kg ha−1). The data are used in this paper to (i) evaluate the Digital Earth Africa 2019 cropland masks, where 61 % of sampled 2020/21 cropland is flagged as cropland by the data set, (ii) develop and test an LAI retrieval method from Earth observation Planet surface reflectance data (validation correlation coefficient R=0.49, root mean square error (RMSE) 0.44 m2 m−2), (iii) create a maize classification data set for Ghana for 2021 (overall accuracy within the region tested: 0.84), and (iv) explore the relationship between maximum LAI and crop yield using a linear model (correlation coefficient R=0.66 and R=0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within the context of the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative, is an important contribution to understanding crop evolution and distribution in smallholder farming systems and will be useful for researchers developing/validating methods to monitor these systems using Earth observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022)

    Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China

    No full text
    Timely and accurate regional crop-yield estimates are crucial for guiding agronomic practices and policies to improve food security. In this study, a crop-growth model was integrated with time series of remotely sensed data through deep learning (DL) methods to improve the accuracy of regional wheat-yield estimations in Henan Province, China. Firstly, the time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) were input into the long short-term memory network (LSTM) model to identify the wheat-growing region, which was further used to estimate wheat areas at the municipal and county levels. Then, the leaf area index (LAI) and grain-yield time series simulated by the Crop Environment REsource Synthesis for Wheat (CERES-Wheat) model were used to train and evaluate the LSTM, one-dimensional convolutional neural network (1-D CNN) and random forest (RF) models, respectively. Finally, an exponential model of the relationship between the field-measured LAI and MODIS NDVI was applied to obtain the regional LAI, which was input into the trained LSTM, 1-D CNN and RF models to estimate wheat yields within the wheat-growing region. The results showed that the linear correlations between the estimated wheat areas and the statistical areas were significant at both the municipal and county levels. The LSTM model provided more accurate estimates of wheat yields, with higher R2 values and lower root mean square error (RMSE) and mean relative error (MRE) values than the 1-D CNN and RF models. The LSTM model has an inherent advantage in capturing phenological information contained in the time series of the MODIS-derived LAI, which is important for satellite-based crop-yield estimates

    Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model

    No full text
    Accurate and timely regional crop yield information, particularly field-level yield estimation, is essential for commodity traders and producers in planning production, growing, harvesting, and other interconnected marketing activities. In this study, we propose a novel data assimilation framework. Firstly, we construct the likelihood constraints for a process-based crop growth model based on the previous year’s statistical yield and the current year’s field observations. Then, we infer the posterior sets of model-simulated time-series LAI and the final yield of winter wheat with a Markov chain Monte Carlo (MCMC) method for each meteorological data grid of the European Centre for Medium-Range Weather Forecasts Reanalysis (v5ERA5). Finally, we estimate the winter wheat yield at the spatial resolution of 10 m by combining Sentinel-2 LAI and the WOFOST model in Hengshui, the prefecture-level city of Hebei province of China. The results show that the proposed framework can estimate the winter wheat yield with a coefficient of determination R2 equal to 0.29 and mean absolute percentage error MAPE equal to 7.20% compared to within-field measurements. However, the agricultural stress that crop growth models cannot quantitatively simulate, such as lodging, can greatly reduce the accuracy of yield estimates

    Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model

    No full text
    Accurate and timely regional crop yield information, particularly field-level yield estimation, is essential for commodity traders and producers in planning production, growing, harvesting, and other interconnected marketing activities. In this study, we propose a novel data assimilation framework. Firstly, we construct the likelihood constraints for a process-based crop growth model based on the previous year’s statistical yield and the current year’s field observations. Then, we infer the posterior sets of model-simulated time-series LAI and the final yield of winter wheat with a Markov chain Monte Carlo (MCMC) method for each meteorological data grid of the European Centre for Medium-Range Weather Forecasts Reanalysis (v5ERA5). Finally, we estimate the winter wheat yield at the spatial resolution of 10 m by combining Sentinel-2 LAI and the WOFOST model in Hengshui, the prefecture-level city of Hebei province of China. The results show that the proposed framework can estimate the winter wheat yield with a coefficient of determination R2 equal to 0.29 and mean absolute percentage error MAPE equal to 7.20% compared to within-field measurements. However, the agricultural stress that crop growth models cannot quantitatively simulate, such as lodging, can greatly reduce the accuracy of yield estimates
    corecore