
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Roger Deal,
Emory University, United States

REVIEWED BY

Ali Ahmad,
Universitat Politècnica de València, Spain
Avinash Kumar Ranjan,
National Institute of Technology Rourkela,
India

*CORRESPONDENCE

Zhe Liu

liuz@cau.edu.cn

RECEIVED 06 April 2023

ACCEPTED 23 August 2023

PUBLISHED 07 September 2023

CITATION

Liu J, Hou X, Chen S, Mu Y, Huang H,
Wang H, Liu Z, Li S, Zhang X, Zhao Y
and Huang J (2023) A method for
estimating yield of maize inbred
lines by assimilating WOFOST model
with Sentinel-2 satellite data.
Front. Plant Sci. 14:1201179.
doi: 10.3389/fpls.2023.1201179

COPYRIGHT

© 2023 Liu, Hou, Chen, Mu, Huang, Wang,
Liu, Li, Zhang, Zhao and Huang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 07 September 2023

DOI 10.3389/fpls.2023.1201179
A method for estimating yield of
maize inbred lines by
assimilating WOFOST model
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1College of Land Science and Technology, China Agricultural University, Beijing, China, 2Key
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Maize is the most widely planted food crop in China, and maize inbred lines, as

the basis of maize genetic breeding and seed breeding, have a significant impact

on China’s seed security and food safety. Satellite remote sensing technology has

been widely used for growth monitoring and yield estimation of various crops,

but it is still doubtful whether the existing remote sensing monitoring means can

distinguish the growth difference between maize inbred lines and hybrids and

accurately estimate the yield of maize inbred lines. This paper explores a method

for estimating the yield of maize inbred lines based on the assimilation of crop

models and remote sensing data, initially solves the problem. At first, this paper

analyzed the WOFOST(World Food Studies)model parameter sensitivity and used

the MCMC(Markov Chain Monte Carlo) method to calibrate the sensitive

parameters to obtain the parameter set of maize inbred lines differing from

common hybrid maize; then the vegetation indices were selected to establish an

empirical model with the measured LAI(Leaf Area Index) at three key

development stages to obtain the remotely sensed estimated LAI; finally, the

yield of maize inbred lines in the study area was estimated and mapped pixel by

pixel using the EnKF(Ensemble Kalman Filter) data assimilation algorithm. Also,

this paper compares a method of assimilation by setting a single parameter.

Instead of the WOFOST parameter optimization process, a parameter

representing the growth weakness of the inbred lines was set in WOFOST to

distinguish the inbred lines from the hybrids. The results showed that the yield

estimated by the two methods compared with the field measured yield data had

R2: 0.56 and 0.18, and RMSE: 684.90 Kg/Ha and 949.95 Kg/Ha, respectively,

which proved that the crop growth model of maize inbred lines established in

this study combined with the data assimilation method could initially achieve the

growth monitoring and yield estimation of maize inbred lines.
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Introduction

Agricultural information technology and intelligence have

become the global trend of agricultural development, and the seed

industry, as the “chip” of agriculture, has a vital strategic position in

solving the world food problem and protecting national food

security. In recent years, the Internet of Things, UAV(Unmanned

Aerial Vehicle) remote sensing, satellite remote sensing technology

and other high-tech information technology has also been

successfully used in breeding, seed breeding, variety promotion

and other aspects (Sishodia et al., 2020; Weiss et al., 2020). Among

the world’s major food crops, maize cultivation area accounts for

about 1/10 of the global cultivated area, while in China, the planted

area of maize reached about 9 billion hectares, accounting for about

1/3 of the total cultivated area in the country (Ren et al., 2020;

Zhang et al., 2020). At the same time, about 60 million hectares of

seed production fields are needed each year to meet the needs of

more than 9 billion hectares of common field corn with seeds in

China (Zhong et al., 2020). As the basis for the development of the

maize seed industry, maize inbred lines are clearly distinguished

from maize hybrids in terms of their growth and physicochemical

parameters. In recent years, some scholars have gradually applied

remote sensing technology to maize breeding and seed production,

and some studies have used UAV remote sensing technology to

monitor maize phenotypes and assist in maize breeding (Hui et al.,

2018; Zhu et al., 2020); In the seed production segment, some

studies combined multivariate remote sensing data to identify

maize seed production fields and distinguish maize field

production scenarios from maize seed production fields (Zhang

et al., 2020), results indicate that maize inbreds and hybrids need to

be differentiated when monitored using remote sensing, and that

the two differ significantly in remote sensing spectral characteristics

and textural features (Ren et al., 2020). Therefore, this study focuses

on the remote sensing method for maize inbred line yield

estimation, which can quickly realize a more accurate and

spatially continuous maize seed yield estimation and contribute to

seed production and food security. For example, the method

proposed in this study can help seed enterprises to calculate the

production scale and estimate the economic benefits, and

governmental organizations can also grasp the regional seed

production situation based on the method proposed in this study,

so as to adjust the planting policy in a timely manner to ensure

food security.

In crop yield estimation, the traditional method mainly relies on

field yield measurement and sampling statistics, but this method has

poor timeliness, high cost and low accuracy. The remote sensing

data has been widely used in the field of crop yield estimation with

its advantages of high timeliness, large scope and rich information

content (Bé gué et al., 2018; Benami et al., 2021). Spectral

information contained in each band of remote sensing data and

vegetation indices calculated based on spectral reflectance (Giovos

et al., 2021; Hu et al., 2021) can reflect the crop growth condition

and has high accuracy. There are two main approaches to

combining remote sensing data for crop yield estimation. The

first one uses a crop growth model to simulate the entire growth

process of the crop to obtain yield estimations, remotely sensed data
Frontiers in Plant Science 02
are often used as observations with spatial continuity to correct

model-simulated tracks, This approach is based on the principles of

yield formation and is highly mechanistic. However, the algorithm

is complex, computationally inefficient, and difficult to operate on a

large scale (Wu et al., 2021; Cui et al., 2022; Ji et al., 2022). The

second one is based on the principle of statistics, selecting remote

sensing indicators with strong correlated with yield, and using

simple regression, machine learning, deep learning and other

statistical methods to establish regression models, so as to

estimate crop yield. This way is data-driven and computationally

fast, but requires a large amount of data for model training and does

not have strong spatial generalization capability. Both methods have

a large number of applications (Maimaitijiang et al., 2020; Tian

et al., 2021). The paper focuses on exploring the differences in

growth simulation between maize inbred lines and field maize

mechanistically, and the study area is small, so the method of

crop model and remote sensing data assimilaWtion is chosen.

When using the assimilation method for yield estimation, various

types of data such as meteorological, soil data, and agromanagement

are first entered into the crop model (WOFOST, DSSAT, APISIM,

AquaCrop, etc). Crop growth is simulated, while leaf area index(LAI),

soil moisture(SM) and chlorophyll fluorescence are introduced as

assimilation variables for remote sensing observations for

assimilation and correction of crop model simulation results. In

assimilation systems, two issues, parameter sensitivity and

parameter calibration of crop models, data assimilation strategies

and algorithms, have been the focus of the researches. Some studies

(Attia et al., 2021; Pereira et al., 2021) analyze crop parameter

sensitivity by sensitivity analysis methods such as Sobol, Fourier

amplitude sensitivity test(FAST), and extended Fourier amplitude

sensitivity test(EFAST), followed by calibration of crop model

sensitive parameters using parameter optimization methods such as

Markov chain Monte Carlo(MCMC), differential evolutionary

Markov chain(DEMC), simulated annealing(SA), and robust

parameter estimation(ROPE), It enables the model to achieve high

accuracy spatial migration with the help of a small amount of field

observation data (Wu et al., 2022a; Wu et al., 2022b; Zhuo et al.,

2022b). However, most of these studies were conducted for the use of

the model across regions with parameter correction (Attia et al.,

2021), while only few studies were conducted for parameter

optimization aiming at different varieties of the same crop, inbred

lines and hybrids (Tewes et al., 2020). In the study of assimilation

strategies and algorithms, parameter optimization methods based on

cost functions and ensemble filtering methods based on estimation

theory are the two main types of data assimilation methods. A

systematic review of the assimilation strategies of remote sensing

and crop models has been carried out by many scholars (Jin et al.,

2018; Karthikeyan et al., 2020). The parameter optimization method

iteratively adjusts the parameters or initial conditions in the crop

model to minimize the difference between the remotely sensed

observations and the model simulated values for the purpose of

optimizing the crop model, simplex search algorithm, maximum

likelihood method, composite hybrid evolutionary algorithm (SCE-

UA), Powell conjugate direction method, particle swarm algorithm

(PSO), genetic algorithm (GA), simulated annealing method (SA)

and other methods are applied (Huang et al., 2015; Huang et al., 2016;
frontiersin.org
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Gaso et al., 2021); The construction of the cost function is in the form

of root mean square error(RMSE), least squares, three-dimensional

variational (3DVar), four-dimensional variational (4DVar), etc.

(Huang et al., 2020; Wu et al., 2021). Sequential filtering allows the

state variables simulated by the model to be continuously updated to

optimal forecast values, and is a data assimilation method that is

time-continuous and can be applied to real-time simulations. The

commonly used sequential filtering algorithms are extended kalman

filter (EKF), ensemble kalman filter (EnKF) and particle filter (PF)

algorithms (Kang and Özdoğ an, 2019). ENKF is the most

representative and widely used sequential assimilation algorithm,

which has been proved to be reliable in crop modeling and remote

sensing data assimilation studies (Huang et al., 2019), so ENKF

algorithm is chosen in this paper.

In summary, this study focuses on resolving the

following questions:
Fron
(1) It is still questionable whether the research method of crop

model assimilation with remote sensing data can simulate

the growth differences between crop inbred lines and

hybrids and whether it can accurately estimate the yield

of maize inbred lines.

(2) In studies of WOFOST models simulating maize growth,

the models are usually calibrated to distinguish between

different regions, different growing environments, and

other issues, and few studies have been conducted on the

calibration between inbred lines and hybrids of the same

crop. There is also a lack of WOFOST parameter sets

describing the growth of maize inbred lines.

(3) There have been many studies on the assimilation of crop

models with remote sensing data using low and medium

resolution (MODIS, etc.) pixels as assimilation units, but

the accuracy when using high spatial resolution remote

sensing images for fine crop monitoring and yield

estimation, as well as the scale effects between data when

validating them, are still open to discussion.
Therefore, we used sentinel-2 satellite remote sensing data

assimilated with the WOFOST model to estimate the yield of

maize inbred lines and validated using field yield measurement

data to answer the above scientific questions initially.
Materials and methods

Study area

This study was conducted in a maize seed production base

within Ganzhou District, Zhangye City, Gansu Province, People’s

Republic of China. Ganzhou District is the largest hybrid maize seed

production county in China, with a stable seed production area of

more than 9 million hectares and an annual output of more than

320 million Kg, accounting for one-third of the national maize seed

consumption, and the maize seed production situation in Ganzhou

District is closely related to the national seed security and food
tiers in Plant Science 03
security. Ganzhou District is located in the central part of Gansu

Province (between 100°6′-100°52′East and 38°32′-39°24′North),
Ganzhou District is a typical temperate continental climate, with

an annual average temperature of 6-8°C and an average daily

temperature difference of 13.4°C throughout the maize

reproductive period -18.2°C between; ≥0°C accumulation

temperature 2734°C, accumulation temperature over 10°C is

2140°C,; frost-free period 112-165 days; agricultural area altitude

1200-2500m, annual sunshine hours 3000-3600 hours, total annual

solar radiation 147.99cal/m2.

The study area covers about 49,500 hectares, all planted with

maize self-crosses for maize seed production, and using a threshold

segmentation method to extract sentinel-2 pixels which strictly

contain maize. The maize self-incompatible lines in the study area

were planted at the end of April and harvested at the end of

September, all under mulch drip irrigation with good water and

fertilizer conditions. The three key fertility processes selected for

this study were: nodulation (mid-June to end-June,2021), tasseling

(end-July to early August,2021), and lactation (early to mid-

September,2021). The spatial distribution of measurement sample

points for field LAI measurements conducted at each of the three

fertility stages is also shown in Figure 1:
Data collection

A total of five datasets were used in this study, including one

remote sensing dataset, two station observations and two

field measurements:

1)Remote sensing data, Sentinel-2 Level-2A images of three key

fertility stages of maize inbred lines with a spatial resolution of 10m,

were clipped and band synthesized to invert the leaf area index in

the study area.

2)Meteorological data, the meteorological data used in this

paper is the daily value dataset (V3.0) of climate information

from Chinese ground-based international exchange stations

(dataset and its reference are in the data availability statement),

which contains daily value data from 824 basic meteorological

stations in China, covering parameters such as air pressure, air

temperature, precipitation, evaporation, relative humidity, wind

direction, wind speed, sunshine hours, etc. As required by the

model inputs, (n.d.)the meteorological data used in this study

include six observed quantities: daily maximum and minimum

temperature, air pressure, wind speed, precipitation, and

radiation. Among them, radiation is calculated from hours of

bright sunshine, and the calculation method is based on the

method proposed by FAO (Allen et al., 1998), The specific

algorithm is as follows:

RS = (aS + bS
n
N
)Ra (1)

Ra =
24(60)
p

GSCdr½wS sin (f) sin (d ) + cos (f) cos (d ) sin (wS)� (2)

wS = arccos½− tan (f) tan (d )� (3)
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RS is Atmospheric upper bound incident radiation, n is hours of

bright sunshine, N is hours of possible sunshine, aS and bS are

Empirical constants, taken as 0.25 and 0.5 respectively, GSC is Solar

Constant, dr is the relative distance between the sun and the earth,

wS is the solar time angle, f is latitude, d is the solar declination.

3)For soil data, soil property data were obtained from the Food

and Agriculture Organization of the United Nations (FAO) soil

dataset with a spatial resolution of 5 min, including parameters

such as permeability, field water holding capacity, and wilting point

water content for different soil textures, while soil moisture data were

also obtained from the meteorological stations mentioned above.

4)The field measurements of LAI data were carried out three

times at the jointing stage (June 22, 2021), tasseling (August 6,

2021), and milky (September 3, 2021) stages of the maize inbred
Frontiers in Plant Science 04
lines, and the sample points were distributed as shown in Figure 2.

Two rows of maize inbred lines (parent or female) were randomly

selected for the five-point sampling method, and then the leaf area

index of the sample points was obtained by taking the average value,

and the measurement was repeated three times. The sample points

with the standard deviation of the three measurements less than

25% were selected as valid measurement points, and the actual LAI

data in the study area were finally obtained.

5)Phenological information and field yield measurement data

were collected from the maize seed production base agronomist

records, and yield measurements were obtained at the maturity of

the maize inbred lines (September 10, 2021) using standard

agronomic yield measurement methods (calculated from number

of ears, number of grains, and thousand grain weight).
FIGURE 2

Overview of the research.
FIGURE 1

Study area, field observations distribution and strategy of LAI sampling.
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Methods

Overview
This study consists of several steps, as shown in the figure:

The first part is the model analysis, we input the required data

for the model, run the model, and at the same time, use the Sobol

global sensitivity analysis method to analyze the crop parameters of

the WOFOST model and select the parameters that need to be

calibrated; then use the MCMC parameter calibration method to

calibrate the sensitive parameters to obtain the parameter set of

maize inbred lines, and at the same time, set an independent

parameter in the model to represent the inbred lines In the

assimilation process, we tried to optimize this parameter to

explore whether the difference in growth between the self and

hybrid could be described by a single parameter; finally, we used

the calibrated parameter set for simulation to obtain the LAI of the

inbred lines. The second part is the remote sensing estimation of

LAI. Four vegetation indices were selected to establish linear

regression models at each of the three fertility stages for

estimation of the LAI of maize inbred lines in the study area. the

third part is data assimilation and validation, using LAI as the

assimilation variable to assimilate the simulation results of the

above two parts, and finally to obtain the yield estimation results

of maize inbred lines combining remote sensing observations and

crop models, and to evaluate the simulation accuracy using ground

observations for validation.

Estimation method of LAI
When using the data assimilation algorithm for analysis, the

first step is to obtain the remote sensing estimations of the LAI of

maize inbred lines on each pixel in the study area. For leaf area

index estimation of a single crop in a small area, the literature

(Parker, 2020; Qiao et al., 2020) shows that empirical models have

the advantages of high computational efficiency, small sample

requirement, and high simulation accuracy compared to more

complex models such as machine learning or process models, and

estimation of small areas can also avoid the disadvantages of poor

robustness of empirical models. NDVI, as the most commonly used

indicator for vegetation remote sensing, is usually chosen as the

backbone for LAI estimation (Zeng et al., 2022). EVI can effectively

address the saturation benefits of high vegetation cover compared to

NDVI, and some studies have used EVI as the main feature for

remote sensing identification of seed production maize, and the

results proved that EVI has a strong correlation with maize inbred
Frontiers in Plant Science 05
lines’ LAI (Ren et al., 2020). NDGI is used to characterize the

information of vegetation greenness, and the correlation with the

relationship with biomass in the early stage of crop growth is very

high (Cao et al., 2020). kNDVI was proposed in 2021 as a new type

of vegetation index obtained by treating NDVI with a kernel

function. The correlation of kNDVI with LAI and biomass is

greatly improved compared to existing vegetation indices and has

been validated at the global scale (Camps-Valls et al., 2021).

Therefore, in this study, four vegetation indices closely related

to the leaf area index were selected. We then used the four

vegetation indices calculated from Sentinel-2 satellite imagery to

do a one-dimensional linear regression with the field-measured LAI

data at each of the three fertility periods of the maize inbred lines to

select the optimal estimation model. The four vegetation indices

and their calculation methods are shown in Table 1.
Model description
The WOFOST model, jointly developed by Wageningen

University and the World Food Research Center in the

Netherlands, is capable of dynamically simulating the growth of

crops under specific climatic and soil conditions over the

reproductive period in daily steps, and the WOFOST model is

one of the most commonly used crop growth models in recent years

in the field of remotely sensed crop growth monitoring and yield

estimation (Zhuo et al., 2022a). The model is driven by day-by-day

meteorological data to explain the effects of light and heat

conditions, soil conditions, and crop varieties on crop growth by

simulating crop respiration, photosynthesis, transpiration, material

partitioning, and leaf senescence, and ultimately to simulate crop

growth, and to support the simulation of three crop growth

conditions: potential growth patterns, water stress, and nutrient

stress. The model is ultimately able to simulate the total dry matter

weight of crop storage organs, which is then converted to obtain

crop yields by converting the standard water content. The reason

for choosing the WOFOSTmodel in this study is that the WOFOST

model uses more parameters to simulate the process of leaf

development as well as yield formation compared to Aquacrop,

Dssat, etc., and can better explain the differences between maize

autogamy and hybrids based on the differences in model parameters

(De Wit et al., 2019). Moreover, WOFOST is the most widely used

in the study of assimilation of remote sensing data and crop models

for yield estimation (Huang et al., 2019).

This study uses the WOFOST model in the potential model,

which requires four sets of data as inputs: meteorological data, soil
TABLE 1 Equations of vegetation indices.

VIs Equation Full name Reference

NDVI NDVI = (Rnir − Rred)=(Rnir + Rred)(4) Normalized Difference Vegetation Index (Tucker, 1979)

EVI EVI = 2:5 · (Rnir − Rred)=(Rnir + 6 · Rred − 7:5 · Rblue + 1)(5)
Enhanced Vegetation
Index

(Huete et al., 2002)

NDGI NDGI = (Rgreen − Rred)=(Rgreen + Rred)(6)
Normalized Difference
Greenness Index

(Nedkov, 2017)

kNDVI kNDVI = tanh (NDVI2)(7) Kernel Normalized Difference Vegetation Index (Camps-Valls et al., 2021)
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data, field management, and crop variety parameters. The

meteorological parameters include daily maximum and minimum

temperature, wind speed, precipitation, and sunshine duration, etc.

The soil data include field water holding capacity, saturation water

content, and wilting coefficient, etc. The field management part

needs to be recorded in the field to obtain them, and the crop variety

parameters are the most important part and the focus of this study.

The Python Crop Simulation Environment (PCSE) framework

provides an environment for operating the WOFOST crop

growth model, and the code for the data assimilation algorithm

was written in the Python language in the Windows 10

operating system.
WOFOST parameter sensitivity analysis method
The Sobol algorithm is a global parameter sensitivity analysis

method based on the variance decomposition principle, which

decomposes the total variance of the objective function into the

variance of each individual variable and the interaction variance of

each variable, and uses it to calculate the first-order sensitivity

parameters and interaction sensitivity parameters of the parameters

(Zhang et al., 2021).The advantage of the Sobol algorithm as a

common sensitivity analysis algorithm for crop model analysis is

that it can calculate global sensitivity and can analyze the

interaction between parameters, and the disadvantage is that it is

computationally intensive. The specific algorithm principle is as

follows.

f (x) = f0 +o
i
fi(xi) +o

i<j
fij(xi, xj) +⋯+o

i<j
f1,2,⋯,n(x1, x2,⋯, xn) (8)

Where: f (x) is integrable and the time variable x conforms to a

uniform distribution in [0, 1],if f (x) satisfies:

∫10fi1 ⋯ ij (xi,⋯, xij )dxk = 0 (9)

Variance function: f (x) can be decomposed into single-

parameter variance with multi-parameter interactions.

o
i

Di

D
+o

i<j

Dij

D
+⋯+

D1,2,⋯,n

D
= 1 (10)

Where: D represents the total variance of the function;  Di

represents xi generating variance;  Dij represents Interaction

produces variance over xi and xj;  D1,2,⋯,n represents n parameters

acting together to produce the variance. Thus, parameter first-order

sensitivity SCi, interaction sensitivity SCij, total sensitivity SCTi can

be represented as:

SCi = Di=D (11)

SCij = Dij=D (12)

SCTi = 1 − D
e i=D (13)
WOFOST model parameter optimization method
MCMC (Monte Carlo Markov Chain) is a parameter calibration

method based on Bayesian theory, which has been widely used in
Frontiers in Plant Science 06
the parameter calibration of various crop growth models as well as

leaf spectral models. Bayesian theory can calculate the posterior

distribution of the model parameters based on the observed values

corresponding to the model output variables, combined with the

prior distribution of the model input parameters, and the principle

of the algorithm is shown in Equation 11. In contrast, the MCMC

method is a Markov chain introduced into the Monte Carlo

stochastic process, which can achieve a sampling distribution that

changes dynamically according to the simulation results and

converges the Markov chain to achieve a steady-state distribution.

The specific principle of the MCMC algorithm is shown in paper

(Andrieu et al., 2003).

p(q=, y) =
f (y=q)g(q)

∫f (y=q)g(q)dq
(14)

where: q represents WOFOST model parameters, y represents

model result (Only LAI in this study), p(q, y)  represents the

posterior probability density function of the parameters, f (y, q) 
represents the observed value likelihood function, g(q) represents
the prior distribution of the parameters

Data assimilation method
The ensemble Kalman filter (EnKF) is a sequential assimilation

method, and the principle of its algorithm can be explained in the

context of this study as follows: the trajectory of the model

simulation is continuously adjusted by incorporating external

remote sensing observations in the simulation framework of the

crop model, and the simulation error is reduced. EnKF assumes that

the observations and the model are Gaussian distributed, and has

the ability to handle nonlinear observations by means of ensemble

forecasting, and is the most promising method for assimilating yield

estimation It is the most promising sequential assimilation method

in the study (Evensen, 2003). The specific steps of its algorithm are

as follows:

Af
k = M(Aa

k−1) (15)

Aa
k = Af

k + PkH
T (HPkH

T + Rk)
−1(Dk −HAf

k) (16)

Among them: Af
k is the forecast matrix for the set of state

variables at moment k, Aa
k is the analysis matrix of the set of state

variables at moment k, Pk is the covariance matrix of the forecast

matrix, Rk is the covariance matrix of the observation matrix, H is

the observation operator, Dk is the observation matrix, M is the

state transformation equation.

In this study, the crop model was first run using default

parameters to simulate maize growth, and LAI was selected as the

assimilation variable, and a Monte Carlo method was used to

perturb LAI and set up to generate forecast ensembles at three

periods of maize jointing stage, tasseling, and milky stage. The

standard deviation of the simulated LAI values was 0.20 and the

standard deviation of the observed LAI values was 0.25 based on the

error between the measured data and the model simulation results.

samples were then extracted from the sampling obeying Gaussian

distribution to generate the forecast ensemble. The EnKF algorithm

was run iteratively at three key fertility stages to drive the model
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simulation to the maturity of the maize inbred lines, and finally the

assimilated simulation results were obtained.

Method of establishing growth weakness
parameter of maize inbred lines

In addition to the optimization of WOFOST sensitive

parameters using the parameter calibration method, this study

also proposes a method to differentiate maize inbred lines from

hybrids: a parameter used to describe the growth weakness of

inbred lines is added to the crop parameter module of the

WOFOST model, and according to the study (Lanza et al., 1997;

Gunjaca et al., 2008), inbred lines of the same crop usually grow 30

to 80 percent as long as hybrids, and the gramineous crops are

usually about 70 percent as long. Therefore, the initial value of this

coefficient is set to 0.7 and the upper and lower bounds of the

parameter are set to [0.3,0.8]. The purpose of this is that: It would

greatly reduce the Computation of parameter optimization if only a

single coefficient could be used to simulate the growth differences

between maize inbred lines and hybrids in the EnKF algorithm

assimilation process.
Results and discussion

LAI remote sensing estimation results

In the process of data assimilation of LAI as a state variable, it is

first necessary to achieve spatially continuous remote sensing

estimation of LAI in the study area. In this study, four vegetation

indices (NDVI, EVI, NDGI, and kNDVI) calculated from Sentinel-
Frontiers in Plant Science 07
2 satellite images were used to establish linear regression models at

three growth stages of maize inbred lines, namely, the jointing,

tasseling, and milky stages, respectively, while the samples were

divided in order to evaluate the stability and accuracy of the models,

of which 70% were used to establish the models and 30% were used

to validate the models, and the validation results are shown in the

following Figure 3.

The results showed that the correlation between the four

vegetation indices and the leaf area index of the maize inbred was

highly significant (p<0.01) at each growth period, which also proved

the feasibility of the linear regression estimation of LAI using

vegetation indices. As shown in the Table 2, the models with the

highest accuracy were selected to invert the LAI of maize inbred

lines in three periods. NDGI had the highest accuracy at the jointing

stage, with R2 and RMSE of 0.72 and 2.4 m2/m2, respectively, and

the other three vegetation indices were also estimated with high

accuracy. In the tasseling stage, kNDVI had the highest estimation

accuracy, with R2 and RMSE of 0.56 and 3.47 m2/m2, respectively,

and it could be seen that the estimation accuracy of the model

decreased in the tasseling stage compared with the jointing stage. In

the milky period, kNDVI also had the highest accuracy, with R2 and

RMSE of 0.49 and 3.63 m2/m2, respectively, and the accuracy of the

model for all vegetation indices decreased further compared with

the previous two stages.

Further analysis based on the above results showed that the maize

inbred lines had a growth disadvantage compared to the hybrids, with

plant height about 1 m lower and biomass about 70% lower

compared to the hybrids (Lanza et al., 1997). After the jointing

stage, the plant height and leaf changes of maize inbred lines were

subtle and slow, so the canopy saturation phenomenon was earlier
FIGURE 3

Validation of the models using 30% independent samples in three development stages.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1201179
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1201179
and more pronounced in the spectral response of the canopy on the

phenological stage. At the jointing stage, the maize inbred lines grow

rapidly and the reflectance in the green band changes significantly, so

NDGI can fit the LAI well. at the tasseling and milky stages, the

traditional linear vegetation index cannot invert the LAI of inbred

lines well, while kNDVI can fit the canopy spectral response of the

maize inbred lines better due to its introduction of the RBF kernel

function (Camps-Valls et al., 2021), so it has a better estimation effect.

The estimating results of the leaf area index of maize inbred lines in

the study area are shown in Figure 4:
Model sensitivity analysis and
parameter calibration

Sensitivity analysis
According to the study, 36 parameters related to leaf

development, photosynthesis and material partitioning in the

crop parameter module of the WOFOST model were selected for

model sensitivity testing, and the upper and lower limits of the

parameter values were referred to the upper and lower limits of the

parameters in theWOFOSTmodel description document, as shown

in Supplementary Material.

In this study, the Sobol sensitivity analysis method based on

variance decomposition was used. Since the target of the study was
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the yield of maize inbred lines and the assimilation variable was

LAI, LAIMAX (maximum leaf area index) and TWSO (total weight

of crop storage organs) of the model output variables were used as

targets for sensitivity analysis, and the first-order sensitivity and

global sensitivity were calculated for 36 parameters, respectively, the

results are shown in Figure 5.

According to the literature, the parameters with Sobol

sensitivity scores over 0.05 were taken as sensitive parameters,

and the results showed that the first-order sensitivity and global

sensitivity of three parameters, SLATB000, TSUM1, TDWI, and

SLATB078, exceeded 0.05, and the first-order sensitivity of

TMPFTB200 exceeded 0.05, but the global sensitivity was low,

and these four parameters were sensitive to the maximum These

four parameters were sensitive to the maximum leaf area index,

among which the sensitivities of two parameters, SLATB000 and

TSUM1, exceeded 0.2, indicating that these two parameters played a

decisive role in the model simulation of maximum leaf area; while

the seven parameters, SPAN, SLATB000, CVO, SLATB078,

TSUM1, TDWI, and TBASE, were sensitive when the model

output variable was the total weight of storage organ sensitive.

The intersection of the sensitive parameters of the two output

variables was taken, and a total of eight sensitive parameters were

obtained, which will be used as the key to distinguish the growth

simulation of maize inbred lines and hybrids, and further

parameter calibration.
B CA

FIGURE 4

Mapping results of LAI calculated in jointing stage (A), tasseling stage (B) and milky stage (C) using Sentinel-2 images.
TABLE 2 Empirical models and model evaluations.

Growth stage Vegetation index Model
Model accuracy

R2 RMSE

Jointing Stage NDGI y=10.8x+1.3 0.72 2.40 m2/m2

Tasseling Stage kNDVI y=18.3x-6.3 0.56 3.47 m2/m2

Milky Stage kNDVI y=5.8x+1.3 0.49 3.63 m2/m2
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Parameter calibration
After obtaining the sensitive parameters of the WOFOST

model, the sensitive parameters were calibrated by the MCMC

method using the LAI of the maize inbred lines obtained from field

measurements. The MCMC method was used to obtain the

posterior distribution of the parameters and the uncertainty

assessment of the parameters by the above-mentioned

computational principles with the default parameters conforming

to the normal distribution at the time of sampling. Based on

previous studies, the upper and lower bounds of the parameters

were determined based on a 30% float of the default values (Zhuo

et al., 2022a). The calibration results are specified in Table 3.

Four of these parameters, SLATB000, CVO, SPAN, and

TMPFTB200, hybrids are taken to be larger than the inbred lines.

While three parameters, SLATB078, TSUM1 and TDWI, were

taken by hybrids to be less than that of the inbred lines. As for

the parameter TBASE, both of them take the same value. Among

the above parameters, SLATB000, SLATB078 and SPAN are all

related to the leaf development of inbred lines. According to the

results of this paper: when firstly emerged, the specific leaf area of

the inbred lines was smaller than that of the hybrids; before
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tasseling (DVS<0.78), the specific leaf area was larger than that of

the hybrids; meanwhile, the leaf senescence index of the inbred lines

was higher than that of the hybrids. In other words, compared with

the hybrids, the leaf growth rate in the early stage was lower than

that of the hybrids, but before entering the tasseling stage

(DVS<0.78), the leaf growth rate was higher than that of the

hybrids, and the leaf senescence of the hybrids was more rapid.

Among the calibration parameters: CVO, TMPFTB200, which

represent the efficiency of inbred lines in terms of material

transformation and carbon assimilation, respectively. The results

show that: The material transformation efficiency of the seeds of the

inbred lines was lower than that of the hybrids, while the CO2

assimilation efficiency of the inbred lines was 80% of that of the

inbred lines at 20°C. Finally, the parameter TSUM1 represents the

accumulated temperature from emergence to tasseling, The results

showed that: The inbred lines require higher accumulated

temperatures from emergence to tasseling than the hybrids,

which means that the hybrids will tasseling faster if they are sown

at the same time under the same conditions. Some studies (Betrán

et al., 2003) have compared the differences in shape between maize

hybrids and inbred lines under stress and non-stress environments.
TABLE 3 optimized crop parameters’ values.

Parameter name Definition Initial value Optimized values
95% Confidence
interval

SLATB000 specific leaf area at 0.00 at the growth period 0.0026 0.002 [0.0019,0.0021]

SLATB078 specific leaf area at 0.78 at the growth period 0.0012 0.0016 [0.00152,0.00168]

CVO efficiency of conversion into storage org 0.671 0.63 [0.5985,0.6615]

TSUM1 temperature sum from emergence to anthesis 695 735 [698.25,771.75]

TDWI initial total crop dry weight 50 35 [33.25,36.75]

SPAN life span of leaves growing at 35 Celsius 33 39 [37.05,40.95]

TBASE lower threshold temperature for ageing of leaves 10 10 [9.5,10.5]

TMPFTB200
Correction factor for the maximum CO2 assimilation rate at 20°
C

1 0.8 [0.76,0.84]
FIGURE 5

Sobol sensitivity score for two target variables: LAIMAX and TWSO.
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The results show that: The hybrids flowered earlier, had taller

plants, more spikes per plant, higher dehiscence rates, slower leaf

senescence, and higher leaf chlorophyll content than the inbred

lines in all environments. This also corroborates with the results of

this study on the calibration of parameters. Another study (Betran

et al., 2003)showed that maize inbred lines have fewer seeds and

faster leaf senescence than hybrids, which is also consistent with the

results of the present experiment.

In previous studies, it is clear that hybrids of maize have

heterozygous advantages over inbred lines in various aspects such

as plant height, biomass, yield, etc. For example, (Hisse et al., 2019)

study showed that: Under the same conditions: plant and tassel

height were consistently higher in the hybrids than in the siblings,

showing 54% and 68% hybrid advantage. And in terms of yield,

(Hisse et al., 2019) showed that: The advantage of hybrids over

inbred lines in grain yield is greater at high soil N than at low soil N

because the growth limitation imposed by the inbred itself reduces

the nutrient demand on the inbred lines, resulting in a different

response to environmental changes. More studies quantified the

heterosis advantage in yield, (Dong et al., 2020) shows that the yield

of the progeny was increased by 24.3% to 186.5% compared to that

of the inbred lines by crossing different strains of the inbred lines.

And based on the crop growth model, this paper explores the key

crop parameters affecting hybrid dominance from the process, and

calibrates them to obtain a parameter set that can basically simulate

the growth condition of the inbred lines.

Simulations were performed using the above inbred lines

parameter set driving the WOFOST model, and the results are as

Figure 6: it can be seen that the calibrated simulation results are

closer to the measured values, and it has been possible to obviously

simulate the growth weakness, in the last measurement, because the

maize leaves have been mostly yellowed, but when using the canopy

analyzer for measurement, the yellowed leaves will affect the

measured values, and the crop model will only simulate the leaf

area index of fresh leaves, so the measured values, remote sensing

estimation, and the model simulation values are more different.
Regional assimilation of yield
tpestimation results

After obtaining the parameter set of the calibrated inbred lines,

LAI was used as the assimilation variable, and three sequential

assimilations were performed using the EnKF algorithm at the

jointing, tasseling, and milky stages, respectively. In the EnKF

assimilation process, the above optimized parameters were

considered to conform to a Gaussian distribution among the

parameters, and the optimized values were used as their means,

with the standard deviation determined empirically from the model,

and each ensemble member from the parameter distribution was

sampled, overriding its default value. The parameter sampling

process for creating the ensemble is shown in Figure 7.

Through the above process, the remote sensing observations

were sequentially assimilated with the simulated results of the

calibrated WOFOST model by means of ensemble forecasting and
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operated pixel by pixel to finally obtain the yield estimation results

of maize inbred lines in the study area, as shown in Figure 8.

Then, validate the yield estimating results in single parameter

assimilation methods and parameter set assimilation method, as

shown in Figure 9.

From the results, it can be seen that results of the two methods

has the same spatial distributions of low and high values, but because

the single parameter method optimized only one parameter, the

range of the estimated results was small and the extreme condition of

high and low yields could not be simulated, in comparison, the

simulation of parameter set assimilation method was more robust

and the simulation results were more uniformly distributed, and the

simulation effect of the high and low yield cases needed to be

improved. The reason for this analysis may be due to the fact that

the number of calibrated parameters is not enough and there are still

more parameters that have an impact on yield that have not been

considered. From the validation results: single parameter assimilation

method R2 = 0.18, RMSE=949.95 Kg/Ha; parameter set assimilation

method R2 = 0.56, RMSE=684.90 Kg/Ha. The parameter assimilation

method has higher coefficient of determination, lower root mean

square error, and better estimation. In this study, the single parameter

assimilation method was used in order to explore whether it is

possible to simply differentiate the growth simulation process of

maize inbred lines from that of hybrids by incorporating a single

correction factor within the framework of the WOFOST model.

However, the results proved that the single-parameter assimilation

method could not accurately estimate the yield of maize inbred lines,

and its accuracy was much lower than that of the traditional

parameter set method. The reason for this was analyzed because in

the growth differences between the inbred lines and the hybrids

exceeded the limits that could be adjusted by a single parameter, so

the parameter set method could better explain the differences

between the two in terms of physiological processes by changing

more parameters. The rationale inherent in the parameter set

assimilation method is also explained in the studies (Wu et al.,

2021; Ji et al., 2022).The above results show that the EnKF-based

parameter set assimilation method can better estimate the yield of

maize inbred lines at both single point and regional scales.
FIGURE 6

Model initially simulated LAI, optimized simulation and field
observations.
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The yield estimation method for maize inbred lines proposed in

this paper, although the overall values of R2 and RMSE are not too

high, is the first time that the assimilation of crop model and remote

sensing data is applied to inbred lines, which refines the research

object from species to varieties, and provides greater possibilities for

the application scenarios of crop models. Meanwhile, with reference

to the method in this paper, we can get the spatially continuous yield

estimation results of inbred lines on a larger scale, which improves the

efficiency and accuracy of hybrid seed yield estimation, and

contributes to guaranteeing the safety of the seed industry.
Conclusion

In this paper, the WOFOST model driven by meteorological,

field management, soil and crop phenology data in 2021 was used to

simulate the growth of maize inbred lines and assimilated with
Frontiers in Plant Science 11
Sentinel-2 satellite remote sensing data to successfully estimate the

yield of maize inbred lines and validated with field yield measured

data, using Ganzhou District, Zhangye City as the study area, and

the following conclusions were obtained.

(1) Through parameter calibration, the WOFOST model can

simulate the growth differences between maize inbred lines and

hybrids, and can simulate key parameters such as leaf area index

and above-ground biomass of maize inbred lines more accurately,

which can be used in monitoring the growth of maize inbred lines.

(2) Among the parameter systems of the WOFOST model, the

parameter set of maize inbred lines formed in this study mainly has

eight parameters used to distinguish maize inbred lines from hybrids

(Chapter 3 for details), and the differences and similarities in

parameter values can be explained in terms of agronomic

mechanisms and corroborated with the results of other studies.

(3) In this paper, two assimilation methods are proposed for

estimating maize inbred lines yield: the assimilation method of
BA

FIGURE 8

Mapping the yield estimation results in study area using two methods:(A) singe parameter assimilation and (B) parameter set assimilation.
FIGURE 7

Parameters distributions and gaussian fit curves when sampling in EnKF algorithm.
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inbred lines parameter set and the assimilation method of singe

parameter. Compared with the two, the assimilation method of

parameter set has more accurate and robust simulation results, and

the algorithm simulates a larger dynamic range, which has been able

to estimate maize inbred lines yield better.

(4) In the validation of yield estimation results, this study used

plots as the basic unit for validation and matched the field yield

measurement data with the assimilated yield estimation results at

spatial scales to avoid errors caused by inconsistent data scales in

the validation process, and from the validation results: R2 reached

0.56 and RMSE was 684.90 Kg/Ha.

The present study has the same limitations and shortcomings:

(1) First, in this study, we only obtained field observations of

leaf area and phenological data of maize inbred lines in one year,

and we will continue to obtain data for many years to continue the

work of this study, to better calibrate the model, and to obtain more

accurate growth parameters of maize inbred lines.

(2) This study did not compare the simulation effect of

WOFOST model with other crop models, and it is still a question

worth exploring whether other models can simulate the growth of

maize inbred lines more easily and accurately.

(3) This study uses a single remote sensing data source, and the

scale of the study is small. How to combine multiple sources of

remote sensing data and apply the remote sensing yield estimation

method of inbred lines developed in this study on a large scale, or

even estimate the maize seed production capacity of the whole

China, will be the focus of our subsequent work.
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