3,343 research outputs found

    2,6,7-Trioxa-1-phosphabicyclo­[2.2.2]octan-4-ylmethanol 1-sulfide

    Get PDF
    The title compound, C5H9O4PS, was synthesized by the reaction of penta­erythritol with thio­phosphoryl chloride. In the crystal structure, the three six-membered rings all adopt boat conformations. Mol­ecules form chains along the c axis via inter­molecular O—H⋯O hydrogen bonds

    Combination and compression of multiple pulses with same or different wavelengths

    Get PDF
    Funding Information: This work was supported in part by the National Natural Science Foundation of China under Grant 61675008 and in part by Shenzhen Science and Technology Innovation Commission under Grant GJHZ20180411185015272. K. Nakkeeran wishes to thank The Royal Society Kan Tong Po International Fellowship 2018 for the financial support to visit The Hong Kong Polytechnic University.Peer reviewedPostprin

    3,5-Dibromo-2-hydroxy­benzaldehyde

    Get PDF
    The title compound, C7H4Br2O2, exhibits a layer packing structure via weak π–π stacking inter­actions [centroid–centroid distances between adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å]. Mol­ecules in each layer are linked by inter­molecular O—H⋯O hydrogen bonding and Br⋯Br inter­actions [3.772 (4) Å]. There are two mol­ecules in the asymmetric unit

    catena-Poly[copper(II)-bis(μ-2,4-dichloro-6-formyl­phenolato)-κ3 O,O′:Cl 4;κ3 Cl 4:O,O′]

    Get PDF
    In the title compound, [Cu(C7H3Cl2O2)2]n, the CuII atom lies on a centre of inversion and adopts a [4+2] coordination mode, with two long axial Cu—Cl coordinative bonds complementing four Cu—O bonds from two 2,4-dichloro-6-formyl­phenolate ligands in a distorted square plane. π–π stacking inter­actions are also formed between neighbouring aromatic rings, with a centroid–centroid separation of 3.624 (2) Å

    Cerebral hemodynamic characteristics of acute mountain sickness upon acute high-altitude exposure at 3,700 m in young Chinese men.

    Get PDF
    PURPOSE: We aimed at identifying the cerebral hemodynamic characteristics of acute mountain sickness (AMS). METHODS: Transcranial Doppler (TCD) sonography examinations were performed between 18 and 24 h after arrival at 3,700 m via plane from 500 m (n = 454). A subgroup of 151 subjects received TCD examinations at both altitudes. RESULTS: The velocities of the middle cerebral artery, vertebral artery (VA) and basilar artery (BA) increased while the pulsatility indexes (PIs) and resistance indexes (RIs) decreased significantly (all p < 0.05). Velocities of BA were higher in AMS (AMS+) individuals when compared with non-AMS (AMS-) subjects (systolic velocity: 66 ± 12 vs. 69 ± 15 cm/s, diastolic velocity: 29 ± 7 vs. 31 ± 8 cm/s and mean velocity, 42 ± 9 vs. 44 ± 10 cm/s). AMS was characterized by higher diastolic velocity [V d_VA (26 ± 4 vs. 25 ± 4, p = 0.013)] with lower PI and RI (both p = 0.004) in VA. Furthermore, the asymmetry index (AI) of VAs was significantly lower in the AMS + group [-5.7 % (21.0 %) vs. -2.5 % (17.8 %), p = 0.016]. The AMS score was closely correlated with the hemodynamic parameters of BA and the V d_VA, PI, RI and AI of VA. CONCLUSION: AMS is associated with alterations in cerebral hemodynamics in the posterior circulation rather than the anterior one, and is characterized by higher blood velocity with lower resistance. In addition, the asymmetry of VAs may be involved in AMS

    A Three-Dimensional Tight-Binding Model and Magnetic Instability of KFe2e2

    Full text link
    For a newly discovered iron-based high T_c superconducting parent material KFe2Se2, we present an effective three-dimensional five-orbital tight-binding model by fitting the band structures. The three t2g-symmetry orbitals of the five Fe 3d orbitals mainly contribute to the electron-like Fermi surface, in agreement with recent angle-resolved photoemission spectroscopy experiments. To understand the groundstate magnetic structure, the two- and three-dimensional dynamical spin susceptibilities within the random phase approximation are investigated. It obviously shows a sharp peak at wave vector Q\mathbf{Q} \thicksim (π\pi, π\pi), indicating the magnetic instability of {\it Neˊ\acute{e}el}-type antiferromagnetic rather than (π\pi/2, π\pi/2)-type antiferromagnetic ordering. While along \emph{c} axis, it exhibits a ferromagnetic coupling between the nearest neighboring FeSe layers. The difference between the present results and the experimental observation in KxFe2-ySe2 is attributed to the presence of Fe vacancy in the latter.Comment: 14 pages, 8 figure

    3,5-Dichloro-2-hydroxy­benzaldehyde

    Get PDF
    The title compound, C7H4Cl2O2, exhibits a layer crystal structure; mol­ecules within each layer are linked by weak C—H⋯O inter­molecular hydrogen bonds. There is also an intramolecular O—H⋯O hydrogen bond

    Dynamic behaviour of a two-microbubble system under ultrasonic wave excitation

    Get PDF
    Acoustic bubbles have wide and important applications in ultrasonic cleaning, sonochemistry and medical ultrasonics. A two-microbubble system (TMS) under ultrasonic wave excitation is explored in the present study, by using the boundary element method (BEM) based on the potential flow theory. A parametric study of the behaviour of a TMS has been carried out in terms of the amplitude and direction of ultrasound as well as the sizes and separation distance of the two bubbles. Three regimes of the dynamic behaviour of the TMS have been identified in terms of the pressure amplitude of the ultrasonic wave. When subject to a strong wave with the pressure amplitude of 1 atm or larger, the two microbubbles become non-spherical during the first cycle of oscillation, with two counter liquid jets formed. When subject to a weak wave with the pressure amplitude of less than 0.5 atm, two microbubbles may be attracted, repelled, or translate along the wave direction with periodic stable separation distance, depending on their size ratio. However, for the TMS under moderate waves, bubbles undergo both non-spherical oscillation and translation as well as liquid jet rebounding.Indisponível

    Wnt3a: functions and implications in cancer

    Full text link
    Abstract Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.http://deepblue.lib.umich.edu/bitstream/2027.42/113235/1/40880_2015_Article_52.pd
    corecore