60 research outputs found

    THE ISOKINETIC MUSCLE ASYMMETRY OF THE THIGH AT 1 YEAR AFTER ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION WAS SIGNIFICANTLY ASSOCIATED WITH GAIT ASYMMETRY

    Get PDF
    Objective: To study the correlation between muscle strength asymmetry and gait asymmetry in 1 year after (Anterior Cruciate Ligament Reconstruction, ACLR). Methods: Twenty-five ACLR patients were enrolled in the Department of Sports Medicine, Peking University Third Hospital. Data of isokinetic muscle strength test one year after ACLR were collected. The concentric and eccentric strength of extensor and flexor muscles at 60°/s, 180°/s and 300°/s on the uninjured side and the injured side were measured respectively, and the peak value of muscle strength was analyzed. The three dimensional motion information and ground reaction force during gait were collected, and the peaks of three dimensional joint angle and moments during gait stance phase were calculated by inverse dynamics analysis. The paired-samples T test was used to analyze the difference of gait parameters and isokinetic muscle strength peaks. Spearman correlation analysis was used to study the correlation between bilateral asymmetry index of isokinetic muscle strength and gait asymmetry index. Results: One year after ACLR, the isokinetic muscle strength peaks of the flexor and extensor muscles on the injured side were significantly lower than those on the uninjured side【60°/s extensor concentric, the injured side: (1.22 ± 0.4)Nm·kg-1, uninjured side: (1.73 ± 0.42)Nm·kg-1, bilateral difference: (-0.5 ± 0.39)Nm·kg-1, P \u3c 0.01; 60°/s flexor concentric, injured side: (0.84 ± 0.19)Nm·kg-1, uninjured side: (1.05 ± 0.23)Nm·kg-1, bilateral difference: (-0.21 ± 0.14)Nm·kg-1, P \u3c 0.01】. Compared with the uninjured side, the injured side showed insufficient knee extension at the time of maximum knee extension during stance phase 【injured side: (5.25 ± 4.17) °, uninjured side: (2.24 ± 3.11) °, bilateral difference: (3.01 ± 2.44) °, P \u3c 0.01】, and the peak extension moment decreased significantly 【injured side: (0.1 ± 0.09) Nm·kg-1·m-1, (0.15 ± 0.07) Nm·kg-1·m-1, (-0.05 ± 0.06) Nm·kg-1·m-1, P \u3c 0.01】. One year after ACLR, the asymmetry of 180°/s isokinetic extensor concentric strength was significantly correlated with the asymmetry of peak flexion moment (R = 0.449, P = 0.024). The asymmetry of 60°/s isokinetic extensor concentric strength was significantly correlated with the asymmetry of peak internal rotation moment (R = 0.421, P = 0.036). One year after ACLR, asymmetries of 180°/s, 300°/s isokinetic extensor concentric strength and 60°/s isokinetic flexor eccentric strength were significantly correlated with peak asymmetries during stance phase. Conclusion: There is a significant correlation between isokinetic muscle strength asymmetry of knee and gait asymmetry. This study suggests that ACLR patients still need regular rehabilitation training to improve muscle strength and motor function 1 year after ACLR, so as to reduce the risk of reinjury and secondary injury

    The contribution of ultracompact dark matter minihalos to the isotropic radio background

    Full text link
    The ultracompact minihalos could be formed during the earlier epoch of the universe. The dark matter annihilation within them is very strong due to the steep density profile, ρr2.25\rho \sim r^{-2.25}. The high energy electrons and positrons from the dark matter annihilation can inverse Compton scatter (ICS) with the background photons, such as CMB photons, to acquire higher energy. On the other hand, the synchrotron radiation can also be produced when they meet the magnetic field. In this paper, we study the signals from the UCMHs due to the dark matter annihilation for the radio, X-ray and γ\gamma-ray band. We found that for the radio emission the UCMHs can provide one kind of source for the radio excess observed by ARCADE 2. But the X-ray signals due to the ICS effect or the γ\gamma-ray signals mainly due to the prompt emission from dark matter would exceed the present observations, such as Fermi, COMPTEL and CHANDRA. We found that the strongest limits on the fraction of UCMHs come from the X-ray observations and the constraints from the radio data are the weakest.Comment: 6 pages, 8 figures, Comments Welcome! Some Refs. are added, some presentation have been corrected. The conclusions remain unchanged. One important reference has been corrected. Some presentations are changed and added according to the referee's comments. Accepted for publication in PR

    Áttekintés a műfajkutatás tendenciáiról és lehetőségeiről. Útban egy kognitív szemléletű műfajelmélet felé

    Get PDF
    <p>Delta, theta, alpha and beta band power at different locations during the walking test (μV<sup>2</sup>).</p

    Constraints on ultracompact minihalos from extragalactic {\gamma}-ray background

    Full text link
    It has been proposed that ultracompact minihalos (UCMHs) might be formed in earlier epoch. If dark matter consists of Weakly Interacting Massive Particles (WIMPs), UCMHs can be treated as the {\gamma}-ray sources due to dark matter annihilation within them. In this paper, we investigate the contributions of UCMHs formed during three phase transi- tions (i.e., electroweak symmetry breaking, QCD confinement and e+ e- annihilation) to the extragalactic {\gamma}-ray background. Moreover, we use the Fermi-LAT observation data of the extragalactic {\gamma}-ray background to get the constraints on the current abundance of UCMHs produced during these phase transitions. We also compare these results with those obtained from Cosmic Microwave Background (CMB) observations and find that the constraints from the Fermi-LAT are more stringent than those from CMBComment: 13 pages, 4 figures, 1 tabl

    Effects of peak ankle dorsiflexion angle on lower extremity biomechanics and pelvic motion during walking and jogging

    Get PDF
    ObjectiveAnkle dorsiflexion during walking causes the tibia to roll forward relative to the foot to achieve body forward. Individuals with ankle dorsiflexion restriction may present altered movement patterns and cause a series of dysfunction. Therefore, the aim of this research was to clearly determine the effects of peak ankle dorsiflexion angle on lower extremity biomechanics and pelvic motion during walking and jogging.MethodThis study involved 51 subjects tested for both walking and jogging. The motion capture system and force measuring platforms were used to synchronously collect kinematics and kinetics parameters during these activities. Based on the peak ankle dorsiflexion angle during walking, the 51 subjects were divided into a restricted group (RADF group, angle &lt;10°) and an ankle dorsiflexion-unrestricted group (un-RADF group, angle &gt;10°). Independent-Sample T-tests were performed to compare the pelvic and lower limb biomechanics parameters between the groups during walking and jogging test on this cross-sectional study.ResultsThe parameters that were significantly smaller in the RADF group than in the un-RADF group at the moment of peak ankle dorsiflexion in the walking test were: ankle plantar flexion moment (p &lt; 0.05), hip extension angle (p &lt; 0.05), internal ground reaction force (p &lt; 0.05), anterior ground reaction force (p &lt; 0.01), pelvic ipsilateral tilt angle (p &lt; 0.05). In contrast, the external knee rotation angle was significantly greater in the RADF group than in the un-RADF group (p &lt; 0.05). The parameters that were significantly smaller in the RADF group than in the un-RADF group at the moment of peak ankle dorsiflexion in the jogging test were: peak ankle dorsiflexion angle (p &lt; 0.01); the anterior ground reaction force (p &lt; 0.01), the angle of pelvic ipsilateral rotation (p &lt; 0.05).ConclusionThis study shows that individuals with limited ankle dorsiflexion experience varying degrees of altered kinematics and dynamics in the pelvis, hip, knee, and foot during walking and jogging. Limited ankle dorsiflexion alters the movement pattern of the lower extremity during walking and jogging, diminishing the body’s ability to propel forward, which may lead to higher injury risks
    corecore