31 research outputs found

    Catalytic ozonation of ketoprofen by defective boron nitride

    No full text
    This study focuses on the feasibility of boron nitride as a catalyst for ozonation of ketoprofen. The defective boron nitride was prepared by calcination of boric acid and melamine and characterized by XRD, SEM, FT-IR, XPS, temperature programmed desorption, Raman and UV–Vis diffuse reflectance spectra. The apparent rate constant and removal efficiency of chemical oxygen demand in the boron nitride catalyzed system were 2.7 times and 1.6 times higher than those of the ozonation alone at the pH of 7, respectively. The catalytic active sites were found to be acidic BOH and could be generated by manufacturing defects during preparation

    Mammary Fibrosis Tendency and Mitochondrial Adaptability in Dairy Cows with Mastitis

    No full text
    Dairy cow mammary gland fibrosis causes huge economic losses to livestock production, however, research on dairy cow mammary gland fibrosis is in its infancy and it lacks effective treatments. Therefore, the purpose of this experiment was to explore the correlation between mastitis and fibrosis and mitochondrial damage, and to further explore its pathogenesis. In vivo, mammary tissue and milk samples were collected from healthy cows (n = 10) and mastitis cows (n = 10). The results of the study showed that compared with the control group, the mastitis tissue showed tissue damage, accumulation of collagen fibers, and the content of TGF-β1 in mammary tissue and milk was significantly increased; the level of inflammatory mediators was significantly increased; the fibrotic phenotype, collagen 1, α-SMA, vimentin gene, and protein levels were significantly increased, while the E-cadherin gene and protein levels were significantly decreased. In vitro, based on TGF-β1-induced bMECs, the above experimental results were further confirmed, and TGF-β1 significantly promoted the fibrotic phenotype of bMECs. On the other hand, in vivo results showed that fibrotic mammary tissue had a significantly stronger mitochondrial damage phenotype and significantly higher ROS than the control group. In vitro, the results also found that TGF-β1 induced a significant increase in the mitochondrial damage phenotype of bMECs, accompanied by a large amount of ROS production. Furthermore, in a TGF-β1-induced bMEC model, inhibiting the accumulation of ROS effectively alleviated the elevated fibrotic phenotype of TGF-β1-induced bMECs. In conclusion, the fibrotic phenotype of mammary gland tissue in dairy cows with mastitis was significantly increased, and mastitis disease was positively correlated with mammary fibrotic lesions. In an in vitro and in vivo model of cow mammary fibrosis, bMECs have impaired mitochondrial structure and dysfunction. Inhibiting the accumulation of ROS effectively alleviates the elevated fibrotic phenotype, which may be a potential therapeutic approach to alleviate mammary fibrosis

    Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-κB Signaling Pathway

    No full text
    Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment

    Ameliorating Properties of Perovskite and Perovskite–Silicon Tandem Solar Cells via Mesoporous Antireflection Coating Model

    No full text
    Abstract It is anticipated that perovskite solar cells (PSCs) will overtake other products in the market for next‐generation photovoltaics. The optical loss, however, continues to be a flaw that restricts the photocurrent (Jph) of PSCs. Mesoporous antireflection coatings (ARCs), both monolayer and multilayer, are designed using a combination of the finite element method and equivalent medium theory, and ARCs models are merged with PSCs. In the current work, mesoporous ARCs are made, the optical performance of the device is evaluated using optical modeling, and then the ARCs are integrated into solar cells. The simulation results show that the Jph of planar inverted PSCs can increase to 24.00 mA cm−2 when the front surface of PSCs adopts mesoporous ARC (via parameter optimization and sensible arrangement and combination). An increase of 0.98 mA cm−2 in Jph of PSCs is observed in comparison with flat ARC (23.02 mA cm−2). The strong light transmission and low reflection properties of the mesoporous ARCs are confirmed by the optimized solution. It is important to note that the first fusion of mesoporous and multilayer ARC offers a fresh approach to the development of perovskite and perovskite/silicon tandem solar cells with extremely high efficiency
    corecore