140 research outputs found

    Parallel generalized solutions of mixed boundary value problem on partially fixed unit annulus subjected to arbitrary traction

    Full text link
    This paper provides two parallel solutions on the mixed boundary value problem of a unit annulus subjected to a partially fixed outer periphery and an arbitrary traction acting along the inner periphery using the complex variable method. The analytic continuation is applied to turn the mixed boundary value problem into a Riemann-Hilbert problem across the free segment along the outer periphery. Two parallel interpreting methods of the unused traction and displacement boundary condition along the outer periphery together with the traction boundary condition along the inner periphery respectively form two parallel complex linear constraint sets, which are then iteratively solved via a successive approximation method to reach the same stable stress and displacement solutions with the Lanczos filtering technique. Finally, four typical numerical cases coded by \texttt{FORTRAN} are carried out and compared to the same cases performed on \texttt{ABAQUS}. The results indicate that these two parallel solutions are both accurate, stable, robust, and fast, and validate that these two parallel solutions are numerically equivalent

    Reasonable mechanical model on shallow tunnel excavation to eliminate displacement singularity caused by unbalanced resultant

    Full text link
    When considering initial stress field in geomaterial, nonzero resultant of shallow tunnel excavation exists, which produces logarithmic items in complex potentials, and would further lead to a unique displacement singularity at infinity to violate geo-engineering fact in real world. The mechanical and mathematical reasons of such a unique displacement singularity in the existing mechanical models are elaborated, and a new mechanical model is subsequently proposed to eliminate this singularity by constraining far-field ground surface displacement, and the original unbalanced resultant problem is converted into an equilibrium one with mixed boundary conditions. To solve stress and displacement in the new model, the analytic continuation is applied to transform the mixed boundary conditions into a homogenerous Riemann-Hilbert problem with extra constraints, which is then solved using an approximate and iterative method with good numerical stability. The Lanczos filtering is applied to the stress and displacement solution to reduce the Gibbs phenomena caused by abrupt change of the boundary conditions along ground surface. Several numerical cases are conducted to verify the proposed mechanical model and the results strongly validate that the proposed mechanical model successfully eliminates the displacement singularity caused by unbalanced resultant with good convergence and accuracy to obtain stress and displacement for shallow tunnel excavation. A parametric investigation is subsequently conducted to study the influence of tunnel depth, lateral coefficient, and free surface range on stress and displacement distribution in geomaterial.Comment: 45 pages, 14 figure

    Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004.

    Get PDF
    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy

    Exploring the curriculum development in content and language integrated learning: A systematic review

    Get PDF
    Content and language integrated learning (CLIL) is a booming innovation pervading many educational settings. The global spread of CLIL is being practiced in classrooms the world over. Nevertheless, there is still a lack of systematic curricula for CLIL, despite its widespread adoption. Furthermore, the majority of teachers are implementing CLIL without the support of suitable published materials or resource banks. To explore and explain the curriculum development in CLIL, 281 studies from 2009 to 2019 were reviewed systematically, focusing on peer-reviewed English-language journals. We identified studies through using 'Content and Language Integrated Learning' and CLIL as the search terms in the ProQuest Research Library and EBSCOhost databases. Selected articles were organized into five inquiry areas and analyzed thematically, inspired by the curriculum development model proposed by Pawlas and Oliva: 1) CLIL philosophy; 2) CLIL goals; 3) CLIL plan; 4) CLIL implementation; and 5) CLIL evaluation. Based on these themes, Boyer's scholarship of integration was introduced to propose a holistic model for CLIL curriculum development

    An association study of ADSS gene polymorphisms with schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenylosuccinate synthase (ADSS) catalyzes the first committed step of AMP synthesis. It was suggested that the blood-derived RNA of ADSS was down-regulated in schizophrenia (SZ) and one of the eight putative biomarker genes to discriminate SZ from normal controls. However, it remains unclear whether the reduction of ADSS RNA is due to the polymorphisms of the gene or not.</p> <p>Methods</p> <p>We attempted to examine the association of ADSS gene with schizophrenia in a Chinese population of 480 schizophrenics and 502 normal controls. Genotyping was performed by the Sequenom platform.</p> <p>Results</p> <p>The 6 marker SNPs (rs3102460, rs3127459, rs3127460, rs3127465, rs3006001, and rs3003211) were genotyped. The frequencies of alleles, genotypes, and haplotypes were tested between cases and controls. There was no significant difference of genotypic, allelic, or haplotypic distributions of the 6 SNPs between the two groups.</p> <p>Conclusion</p> <p>Our data did not support ADSS gene as a susceptibility gene for SZ in Chinese Han population. Large sample size study is needed to validate or replicate our association study, especially from other ethnic populations.</p

    Improving CO2 photoconversion with ionic liquid and Co single atoms

    Get PDF
    Photocatalytic CO2 conversion promises an ideal route to store solar energy into chemical bonds. However, sluggish electron kinetics and unfavorable product selectivity remain unresolved challenges. Here, an ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, and borate-anchored Co single atoms were separately loaded on ultrathin g-C3N4 nanosheets. The optimized nanocomposite photocatalyst produces CO and CH4 from CO2 and water under UV-vis light irradiation, exhibiting a 42-fold photoactivity enhancement compared with g-C3N4 and nearly 100% selectivity towards CO2 reduction. Experimental and theoretical results reveal that the ionic liquid extracts electrons and facilitates CO2 reduction, whereas Co single atoms trap holes and catalyze water oxidation. More importantly, the maximum electron transfer efficiency for CO2 photoreduction, as measured with in-situ μs-transient absorption spectroscopy, is found to be 35.3%, owing to the combined effect of the ionic liquid and Co single atoms. This work offers a feasible strategy for efficiently converting CO2 to valuable chemicals

    Tanshinone IIA Protects against Dextran Sulfate Sodium- (DSS-) Induced Colitis in Mice by Modulation of Neutrophil Infiltration and Activation

    Get PDF
    Neutrophils play a critical role in the initiation and maintenance of intestinal inflammation. However, conventional neutrophil-targeted therapies can impair normal host defense. Tanshinone IIA has been recently revealed to act directly on neutrophils. Hence, we aimed at investigating whether Tanshinone IIA can protect against experimental colitis through modulation of neutrophils. We induced colitis in C57BL/6 mice by giving 3% dextran sulfate sodium (DSS) orally, and meanwhile, we treated mice daily with Tanshinone IIA intraperitoneally. The severity of colitis was evaluated by calculating disease activity index (DAI) and histological parameters. Neutrophil infiltration and activation in the colons of mice were measured. Moreover, whether Tanshinone IIA has direct effects on neutrophil migration and activation was determined in vitro. Our data showed that Tanshinone IIA significantly ameliorated the severity of DSS-induced colitis in mice, evidenced by the reduced DAI and improved colonic inflammation. In addition, Tanshinone IIA decreased neutrophil infiltration of intestinal mucosa and activation and reduced colonic inflammatory cytokines in DSS-treated mice. Furthermore, Tanshinone IIA was demonstrated to significantly suppress neutrophil migration and activation. These results provide compelling evidence that Tanshinone IIA has a therapeutic potential for alleviating inflammatory colitis in mice, which is possibly mediated by the immunomodulation of neutrophils

    Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity

    Get PDF
    BACKGROUND: Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome. RESULTS: After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi(-) mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library. CONCLUSIONS: This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users

    Optimized hydrophobic magnetic nanoparticles stabilized pickering emulsion for enhanced oil recovery in complex porous media of reservoir

    Get PDF
    With an extensive application of flooding technologies in oil recovery, traditional emulsion flooding has seen many limits due to its poor stability and easy demulsification. Pursuing a new robust emulsion plays a fundamental role in developing highly effective emulsion flooding technology. In this work, a novel Pickering emulsion with special magnetic nanoparticles Fe3O4@PDA@Si was designed and prepared. To disclose the flooding mechanism from magnetic nanoparticles, the physico-chemical characterization of Fe3O4@PDA@Si was systematically examined. Meanwhile, the flooding property of the constructed Pickering emulsion was evaluated on the basis of certain downhole conditions. The results showed that the synthesis of Fe3O4@PDA@Si nanoparticles was found to have a hydrophobic core-shell structure with a diameter of 30 nm. Pickering emulsions based on Fe3O4@PDA@Si nanoparticles at an oil-to-water ratio of 5:5, 50°C, the water separation rate was only 6% and the droplet diameter of the emulsion was approximately 15 μm in the ultra-depth-of-field microscope image. This demonstrates the excellent stability of Pickering emulsions and improves the problem of easy demulsification. We further discussed the oil displacement mechanism and enhanced oil recovery effect of this type of emulsion. The microscopic flooding experiment demonstrated that profile control of the Pickering emulsion played a more important role in enhanced recovery than emulsification denudation, with the emulsion system increasing oil recovery by 10.18% in the micro model. Core flooding experiments have established that the incremental oil recovery of the Pickering emulsion increases with decreasing core permeability, from 12.36% to 17.39% as permeability drops from 834.86 to 219.34 × 10−3 μm2. This new Pickering emulsion flooding system stabilized by Fe3O4@PDA@Si nanoparticles offers an option for enhanced oil recovery (EOR)

    The efficacy of homestyle rehabilitation on negative symptoms in chronic schizophrenia: A randomized controlled trial

    Get PDF
    ObjectiveSchizophrenia is a debilitating mental disorder with a high disability rate that is characterized by negative symptoms such as apathy, hyperactivity, and anhedonia that can make daily life challenging and impair social functioning. In this study, we aim to investigate the effectiveness of homestyle rehabilitation in mitigating these negative symptoms and associated factors.MethodsA randomized controlled trial was conducted to compare the efficacy of hospital rehabilitation and homestyle rehabilitation for negative symptoms in 100 individuals diagnosed with schizophrenia. The participants were divided randomly into two groups, each persisting for 3 months. The primary outcome measures were the Scale for Assessment of Negative Symptoms (SANS) and Global Assessment of Functioning (GAF). The secondary outcome measures included the Positive Symptom Assessment Scale (SAPS), Calgary Schizophrenia Depression Scale (CDSS), Simpson-Angus Scale (SAS), and Abnormal Involuntary Movement Scale (AIMS). The trial aimed to compare the effectiveness of the two rehabilitation methods.ResultsHomestyle rehabilitation for negative symptoms was found to be more effective than hospital rehabilitation, according to the changes in SANS (T = 2.07, p = 0.04). Further analysis using multiple regression indicated that improvements in depressive symptoms (T = 6.88, p &lt; 0.001) and involuntary motor symptoms (T = 2.75, p = 0.007) were associated with a reduction in negative symptoms.ConclusionHomestyle rehabilitation may have greater potential than hospital rehabilitation in improving negative symptoms, making it an effective rehabilitation model. Further research is necessary to investigate factors such as depressive symptoms and involuntary motor symptoms, which may be associated with the improvement of negative symptoms. Additionally, more attention should be given to addressing secondary negative symptoms in rehabilitation interventions
    • …
    corecore