36 research outputs found

    Forgery-aware Adaptive Vision Transformer for Face Forgery Detection

    Full text link
    With the advancement in face manipulation technologies, the importance of face forgery detection in protecting authentication integrity becomes increasingly evident. Previous Vision Transformer (ViT)-based detectors have demonstrated subpar performance in cross-database evaluations, primarily because fully fine-tuning with limited Deepfake data often leads to forgetting pre-trained knowledge and over-fitting to data-specific ones. To circumvent these issues, we propose a novel Forgery-aware Adaptive Vision Transformer (FA-ViT). In FA-ViT, the vanilla ViT's parameters are frozen to preserve its pre-trained knowledge, while two specially designed components, the Local-aware Forgery Injector (LFI) and the Global-aware Forgery Adaptor (GFA), are employed to adapt forgery-related knowledge. our proposed FA-ViT effectively combines these two different types of knowledge to form the general forgery features for detecting Deepfakes. Specifically, LFI captures local discriminative information and incorporates these information into ViT via Neighborhood-Preserving Cross Attention (NPCA). Simultaneously, GFA learns adaptive knowledge in the self-attention layer, bridging the gap between the two different domain. Furthermore, we design a novel Single Domain Pairwise Learning (SDPL) to facilitate fine-grained information learning in FA-ViT. The extensive experiments demonstrate that our FA-ViT achieves state-of-the-art performance in cross-dataset evaluation and cross-manipulation scenarios, and improves the robustness against unseen perturbations

    Vancomycin associated acute kidney injury in patients with infectious endocarditis: a large retrospective cohort study

    Get PDF
    Background: Vancomycin remains the cornerstone antibiotic for the treatment of infective endocarditis (IE). Vancomycin has been associated with significant nephrotoxicity. However, vancomycin associated acute kidney injury (AKI) has not been evaluated in patients with IE. We conducted this large retrospective cohort study to reveal the incidence, risk factors, and prognosis of vancomycin-associated acute kidney injury (VA-AKI) in patients with IE.Methods: Adult patients diagnosed with IE and receiving vancomycin were included. The primary outcome was VA-AKI.Results: In total, 435 of the 600 patients were enrolled. Of these, 73.6% were male, and the median age was 52 years. The incidence of VA-AKI was 17.01% (74). Only 37.2% (162) of the patients received therapeutic monitoring of vancomycin, and 30 (18.5%) patients had reached the target vancomycin trough concentration. Multiple logistic regression analysis revealed that body mass index [odds ratio (OR) 1.088, 95% CI 1.004, 1.179], duration of vancomycin therapy (OR 1.030, 95% CI 1.003, 1.058), preexisting chronic kidney disease (OR 2.291, 95% CI 1.018, 5.516), admission to the intensive care unit (OR 2.291, 95% CI 1.289, 3.963) and concomitant radiocontrast agents (OR 2.085, 95% CI 1.093, 3.978) were independent risk factors for VA-AKI. Vancomycin variety (Lai Kexin vs. Wen Kexin, OR 0.498, 95% CI 0.281, 0.885) were determined to be an independent protective factor for VI-AKI. Receiver operator characteristic curve analysis revealed that duration of therapy longer than 10.75 days was associated with a significantly increased risk of VA-AKI (HR 1.927). Kidney function was fully or partially recovered in 73.0% (54) of patients with VA-AKI.Conclusion: The incidence of VA-AKI in patients with IE was slightly higher than in general adult patients. Concomitant contrast agents were the most alarmingly nephrotoxic in patients with IE, adding a 2-fold risk of VA-AKI. In patients with IE, a course of vancomycin therapy longer than 10.75 days was associated with a significantly increased risk of AKI. Thus, closer monitoring of kidney function and vancomycin trough concentrations was recommended in patients with concurrent contrast or courses of vancomycin longer than 10.75 days

    Blocking interaction between SHP2 and PD‐1 denotes a novel opportunity for developing PD‐1 inhibitors

    Get PDF
    Small molecular PD‐1 inhibitors are lacking in current immuno‐oncology clinic. PD‐1/PD‐L1 antibody inhibitors currently approved for clinical usage block interaction between PD‐L1 and PD‐1 to enhance cytotoxicity of CD8+ cytotoxic T lymphocyte (CTL). Whether other steps along the PD‐1 signaling pathway can be targeted remains to be determined. Here, we report that methylene blue (MB), an FDA‐approved chemical for treating methemoglobinemia, potently inhibits PD‐1 signaling. MB enhances the cytotoxicity, activation, cell proliferation, and cytokine‐secreting activity of CTL inhibited by PD‐1. Mechanistically, MB blocks interaction between Y248‐phosphorylated immunoreceptor tyrosine‐based switch motif (ITSM) of human PD‐1 and SHP2. MB enables activated CTL to shrink PD‐L1 expressing tumor allografts and autochthonous lung cancers in a transgenic mouse model. MB also effectively counteracts the PD‐1 signaling on human T cells isolated from peripheral blood of healthy donors. Thus, we identify an FDA‐approved chemical capable of potently inhibiting the function of PD‐1. Equally important, our work sheds light on a novel strategy to develop inhibitors targeting PD‐1 signaling axis

    Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study

    Get PDF
    Anterior cruciate ligament (ACL) reconstruction remains a formidable clinical challenge because of the lack of vascularization and adequate cell numbers in the joint cavity. In this study, we developed a novel strategy to mimic the early stage of repair in vivo, which recapitulated extra-articular inflammatory response to facilitate the early ingrowth of blood vessels and cells. A vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was developed and then transferred to reconstruct the ACL in rabbits without interruption of perfusion. At 2 weeks after ACL reconstruction, more well-perfused cells and vessels were found in the regenerated ACL with ETEL, which decreased dramatically at the 4 and 12 week time points with collagen deposition and maturation. ACL treated with ETEL exhibited more mature ligament structure and enhanced ligament-bone healing post-reconstructive surgery at 4 and 12 weeks, as compared with the control group. In addition, the ETEL group was demonstrated to have higher modulus and stiffness than the control group significantly at 12 weeks post-reconstructive surgery. In conclusion, our results demonstrated that the ETEL can provide sufficient vascularity and cellularity during the early stages of healing, and subsequently promote ACL regeneration and ligament-bone healing, suggesting its clinic use as a promising therapeutic modality. Statement of Significance Early inflammatory cell infiltration, tissue and vessels ingrowth were significantly higher in the extra articular implanted scaffolds than theses in the joint cavity. By mimicking the early stages of wound repair, which provided extra-articular inflammatory stimulation to facilitate the early ingrowth of blood vessels and cells, a vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was constructed by subcutaneous implantation for 2 weeks. The fully vascularized TE ligament was then transferred to rebuild ACL without blood perfusion interruption, and was demonstrated to exhibit improved ACL regeneration, bone tunnel healing and mechanical properties. (C) 2017 Published by Elsevier Ltd on behalf of Acta Materialia Inc

    Study of emulsion explosive quality assessment system based on soft measurement and multilevel fuzzy evaluation

    No full text
    Aiming at the inaccuracy and blindness of the traditional detection and assessment methods for the quality of emulsion explosives, a method for evaluating the quality of emulsion explosives based on soft measurement and multilevel fuzzy evaluation is proposed. The soft-sensing model of BP neural network can predict the online unmeasured performance indicators of detonation velocity and detonation online. The multilevel fuzzy evaluation method establishes the reliable multilevel fuzzy evaluation system based on the key parameters of the production process and expert experience. Experiments show that this soft-sensing model have made the convergence quickly and the accuracy highly,and can accurately predicts the detonation velocity and brisance of emulsion explosives online. In the last part, the design of quality assessment system can provide a new idea for solving the point of quality blindness detection and assessment

    Effects of Interlaminar Failure on the Scratch Damage of Automotive Coatings: Cohesive Zone Modeling

    No full text
    Interlaminar failure caused by scratches is a common damage mode in automotive coatings and is considered the potential trigger for irreversible destruction, i.e., plowing. This work strives to numerically investigate the mechanisms responsible for the complex scratch behavior of an automotive coating system, considering the interfacial failure. A finite element model is developed by incorporating a large deformation cohesive zone model for scratch-induced debonding simulation, where the mass scaling technique is utilized to minimize computational burden while ensuring accuracy. The delamination phenomenon of the automotive coating is reproduced, and its effects on scratch damage behavior are analyzed. Accordingly, it is revealed that the interlaminar delamination would produce significant stress redistribution, which leads to brittle and ductile damage of the coating and consequently affects the formation of plowing. Eventually, parametric studies on the effects of interfacial properties are performed. They demonstrate that the shear strength and shear fracture energy dominate scratch-induced delamination

    Polynomial Algebra (in Chinese)

    No full text
    National audienc

    DataSheet_1_Ginsenoside Rg1 as a promising adjuvant agent for enhancing the anti-cancer functions of granulocytes inhibited by noradrenaline.docx

    No full text
    IntroductionIn recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone.Methods and resultsAfter screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo.DiscussionIn future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.</p
    corecore