2,483 research outputs found

    Wave Mechanics of Two Hard Core Quantum Particles in 1-D Box

    Full text link
    The wave mechanics of two impenetrable hard core particles in 1-D box is analyzed. Each particle in the box behaves like an independent entity represented by a {\it macro-orbital} (a kind of pair waveform). While the expectation value of their interaction, ,vanishesforeverystateoftwoparticles,theexpectationvalueoftheirrelativeseparation,, vanishes for every state of two particles, the expectation value of their relative separation, , satisfies λ/2 \ge \lambda/2 (or qπ/dq \ge \pi/d, with 2d=L2d = L being the size of the box). The particles in their ground state define a close-packed arrangement of their wave packets (with =λ/2 = \lambda/2, phase position separation Δϕ=2π\Delta\phi = 2\pi and momentum qo=π/d|q_o| = \pi/d) and experience a mutual repulsive force ({\it zero point repulsion}) fo=h2/2md3f_o = h^2/2md^3 which also tries to expand the box. While the relative dynamics of two particles in their excited states represents usual collisional motion, the same in their ground state becomes collisionless. These results have great significance in determining the correct microscopic understanding of widely different many body systems.Comment: 12 pages, no figur

    Role of the Brans-Dicke scalar in the holographic description of dark energy

    Full text link
    We study cosmological application of the holographic energy density in the Brans-Dicke theory. Considering the holographic energy density as a dynamical cosmological constant, it is more natural to study it in the Brans-Dicke theory than in general relativity. Solving the Friedmann and Brans-Dicke field equations numerically, we clarify the role of Brans-Dicke field during evolution of the universe. When the Hubble horizon is taken as the IR cutoff, the equation of state (w_{\Lmd}) for the holographic energy density is determined to be 5/3 when the Brans-Dicke parameter \omg goes infinity. This means that the Brans-Dicke field plays a crucial role in determining the equation of state. For the particle horizon IR cutoff, the Brans-Dicke scalar mediates a transition from w_{\Lmd} = -1/3 (past) to w_{\Lmd} = 1/3 (future). If a dust matter is present, it determines future equation of state. In the case of future event horizon cutoff, the role of the Brans-Dicke scalar and dust matter are turned out to be trivial, whereas the holographic energy density plays an important role as a dark energy candidate with w_{\Lmd} =-1.Comment: 10pages, 3figures, version to appear in PL

    High-temperature weak ferromagnetism on the verge of a metallic state: Impact of dilute Sr-doping on BaIrO3

    Full text link
    The 5d-electron based BaIrO3 is a nonmetallic weak ferromagnet with a Curie temperature at Tc=175 K. Its largely extended orbitals generate strong electron-lattice coupling, and magnetism and electronic structure are thus critically linked to the lattice degree of freedom. Here we report results of our transport and magnetic study on slightly Sr doped BaIrO3. It is found that dilute Sr-doping drastically suppresses Tc, and instantaneously leads to a nonmetal-metal transition at high temperatures. All results highlight the instability of the ground state and the subtle relation between magnetic ordering and electron mobility. It is clear that BaIrO3 along with very few other systems represents a class of materials where the magnetic and transport properties can effectively be tuned by slight alterations in lattice parameters

    Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    Full text link
    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. As a second model we suggest generalized holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio

    Observation of Two New N* Peaks in J/psi -> ppinˉp pi^- \bar n and pˉπ+n\bar p\pi^+n Decays

    Full text link
    The πN\pi N system in decays of J/ψNˉNπJ/\psi\to\bar NN\pi is limited to be isospin 1/2 by isospin conservation. This provides a big advantage in studying NπNN^*\to \pi N compared with πN\pi N and γN\gamma N experiments which mix isospin 1/2 and 3/2 for the πN\pi N system. Using 58 million J/ψJ/\psi decays collected with the Beijing Electron Positron Collider, more than 100 thousand J/ψpπnˉ+c.c.J/\psi \to p \pi^- \bar n + c.c. events are obtained. Besides two well known NN^* peaks at 1500 MeV and 1670 MeV, there are two new, clear NN^* peaks in the pπp\pi invariant mass spectrum around 1360 MeV and 2030 MeV. They are the first direct observation of the N(1440)N^*(1440) peak and a long-sought "missing" NN^* peak above 2 GeV in the πN\pi N invariant mass spectrum. A simple Breit-Wigner fit gives the mass and width for the N(1440)N^*(1440) peak as 1358±6±161358\pm 6 \pm 16 MeV and 179±26±50179\pm 26\pm 50 MeV, and for the new NN^* peak above 2 GeV as 2068±340+152068\pm 3^{+15}_{-40} MeV and 165±14±40165\pm 14\pm 40 MeV, respectively

    Search for Invisible Decays of η\eta and η\eta^\prime in J/ψϕηJ/\psi \to \phi\eta and ϕη\phi \eta^\prime

    Full text link
    Using a data sample of 58×10658\times 10^6 J/ψJ/\psi decays collected with the BES II detector at the BEPC, searches for invisible decays of η\eta and η\eta^\prime in J/ψJ/\psi to ϕη\phi\eta and ϕη\phi\eta^\prime are performed. The ϕ\phi signals, which are reconstructed in K+KK^+K^- final states, are used to tag the η\eta and η\eta^\prime decays. No signals are found for the invisible decays of either η\eta or η\eta^\prime, and upper limits at the 90% confidence level are determined to be 1.65×1031.65 \times 10^{-3} for the ratio B(ηinvisible)B(ηγγ)\frac{B(\eta\to \text{invisible})}{B(\eta\to\gamma\gamma)} and 6.69×1026.69\times 10^{-2} for B(ηinvisible)B(ηγγ)\frac{B(\eta^\prime\to \text{invisible})}{B(\eta^\prime\to\gamma\gamma)}. These are the first searches for η\eta and η\eta^\prime decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo

    Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation

    Full text link
    Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this paper, a scenario, in which a contracting phase is followed by an inflationary phase, is constructed. We calculate the perturbation spectrum and show that this scenario can provide a reasonable explanation for lower CMB anisotropies on large angular scales.Comment: 5 pages, 3 figure

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Parametrization of Born-Infeld Type Phantom Dark Energy Model

    Full text link
    Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior of dark energy density with respect to red-shift zz, potentials with respect to ϕ\phi and zz are shown mathematically. Moreover, we investigate the effect of parameter η\eta upon the evolution of the constructed potential with respect to zz. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.Comment: 5 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore