1,942 research outputs found

    A novel method for accurate operon predictions in all sequenced prokaryotes

    Get PDF
    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacter pylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from six phylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC 6803 has many operons even though it has unusually wide spacings between conserved adjacent genes

    Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7

    Full text link
    We report complex metamagnetic transitions in single crystals of the new low carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization, and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K. Neutron diffraction measurements show that the magnetic ground state of YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab plane. With such an ordered state, no metamagnetic transitions are expected when a magnetic field is applied along the c axis. It is therefore surprising that high field magnetization, torque, and resistivity measurements with H||c reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When the field is tilted away from the c axis, towards the ab plane, both metamagnetic transitions are shifted to higher fields. The first metamagnetic transition leads to an abrupt increase in the electrical resistivity, while the second transition is accompanied by a dramatic reduction in the electrical resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7 are strongly coupled. We discuss the origin of the anomalous metamagnetism and conclude that it is related to competition between crystal electric field anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the supplementary materia

    Epistasis dominates the genetic architecture of Drosophila quantitative traits

    Get PDF
    Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland). We assessed allele frequency changes between pools of individuals at the extremes of the distribution for each trait in the Flyland population by deep DNA sequencing. The genetic architecture of all traits was highly polygenic in both analyses. Surprisingly, none of the SNPs associated with the traits in Flyland replicated in the DGRP and vice versa. However, the majority of these SNPs participated in at least one epistatic interaction in the DGRP. Despite apparent additive effects at largely distinct loci in the two populations, the epistatic interactions perturbed common, biologically plausible, and highly connected genetic networks. Our analysis underscores the importance of epistasis as a principal factor that determines variation for quantitative traits and provides a means to uncover genetic networks affecting these traits. Knowledge of epistatic networks will contribute to our understanding of the genetic basis of evolutionarily and clinically important traits and enhance predictive ability at an individualized level in medicine and agricultur

    Regular fat and reduced fat dairy products show similar associations with markers of adolescent cardiometabolic health

    Get PDF
    Reduced fat dairy products are generally recommended for adults and children over the age of two years. However, emerging evidence suggests that dairy fat may not have detrimental health effects. We aimed to investigate prospective associations between consumption of regular versus reduced fat dairy products and cardiometabolic risk factors from early to late adolescence. In the West Australian Raine Study, dairy intake was assessed using semi-quantitative food frequency questionnaires in 860 adolescents at 14 and 17-year follow-ups; 582 of these also had blood biochemistry at both points. Using generalized estimating equations, we examined associations with cardiometabolic risk factors. Models incorporated reduced fat and regular fat dairy together (in serves/day) and were adjusted for a range of factors including overall dietary pattern. In boys, there was a mean reduction in diastolic blood pressure of 0.66 mmHg (95% CI 0.23–1.09) per serve of reduced fat dairy and an independent, additional reduction of 0.47 mmHg (95% CI 0.04–0.90) per serve of regular fat dairy. Each additional serve of reduced fat dairy was associated with a 2% reduction in HDL-cholesterol (95% CI 0.97–0.995) and a 2% increase in total: HDL-cholesterol ratio (95% CI 1.002–1.03); these associations were not observed with regular fat products. In girls, there were no significant independent associations observed in fully adjusted models. Although regular fat dairy was associated with a slightly better cholesterol profile in boys, overall, intakes of both regular fat and reduced fat dairy products were associated with similar cardiometabolic associations in adolescents

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

    Get PDF
    Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation

    Identification of mRNA isoform switching in breast cancer

    Get PDF
    Abstract Background Alternative splicing provides a major mechanism to generate protein diversity. Increasing evidence suggests a link of dysregulation of splicing associated with cancer. While previous genomic-based studies demonstrated the expression of a handful of tumor-specific isoforms, genome-wide alterations in the balance between isoforms and cancer subtypes is understudied. Result We systematically analyzed the isoform-level expression patterns and isoform switching events of 819 breast tumor and normal samples assayed by mRNA-seq from TCGA project. On average, 2.2 isoforms per gene were detected and 67.5 % of detected genes (i.e. expressed) showed 1–2 isoforms only. While the majority of isoforms for a given gene were positively correlated with each other and the overall gene level, 470 pairs of isoforms displayed an inverse correlation suggesting a switching event. Most of the isoform switching events were associated with molecular subtypes, including a Basal-like-associated switching in CTNND1. 88 genes showed switching independent of subtypes, among which the isoform pattern of PRICKLE1 was associated with a large genomic signature of biological significance. Conclusion Our results reveal that the majority of genes do not undergo complex mRNA splicing within breast cancers, and that there is a general concordance in isoform and gene expression levels in breast tumors. We identified hundreds of isoform switching events across breast tumors, most of which were associated with differences in tumor subtypes. As exemplified by the detailed analysis of CTNND1 and PRICKLE1, these isoform switching events potentially provide new insights into the post-transcriptional regulatory mechanisms of tumor subtypes and cancer biology

    Utilising accessible and reproducible neurological assessments in clinical studies: Insights from use of the Neurological Impairment Scale in the multi-centre COVID-CNS study

    Get PDF
    Reproducible and standardised neurological assessment scales are important in quantifying research outcomes. These scales are often performed by non-neurologists and/or non-clinicians and must be robust, quantifiable, reproducible and comparable to a neurologist's assessment. COVID-CNS is a multi-centre study which utilised the Neurological Impairment Scale (NIS) as a core assessment tool in studying neurological outcomes following COVID-19 infection. We investigated the strengths and weaknesses of the NIS when used by non-neurology clinicians and non-clinicians, and compared performance to a structured neurological examination performed by a neurology clinician. Through our findings, we provide practical advice on how non-clinicians can be readily trained in conducting reproducible and standardised neurological assessments in a multi-centre study, as well as illustrating potential pitfalls of these tools
    • …
    corecore