2,885 research outputs found

    Continuous Authentication for Voice Assistants

    Full text link
    Voice has become an increasingly popular User Interaction (UI) channel, mainly contributing to the ongoing trend of wearables, smart vehicles, and home automation systems. Voice assistants such as Siri, Google Now and Cortana, have become our everyday fixtures, especially in scenarios where touch interfaces are inconvenient or even dangerous to use, such as driving or exercising. Nevertheless, the open nature of the voice channel makes voice assistants difficult to secure and exposed to various attacks as demonstrated by security researchers. In this paper, we present VAuth, the first system that provides continuous and usable authentication for voice assistants. We design VAuth to fit in various widely-adopted wearable devices, such as eyeglasses, earphones/buds and necklaces, where it collects the body-surface vibrations of the user and matches it with the speech signal received by the voice assistant's microphone. VAuth guarantees that the voice assistant executes only the commands that originate from the voice of the owner. We have evaluated VAuth with 18 users and 30 voice commands and find it to achieve an almost perfect matching accuracy with less than 0.1% false positive rate, regardless of VAuth's position on the body and the user's language, accent or mobility. VAuth successfully thwarts different practical attacks, such as replayed attacks, mangled voice attacks, or impersonation attacks. It also has low energy and latency overheads and is compatible with most existing voice assistants

    Entangling a series of trapped ions by moving cavity bus

    Full text link
    Entangling multiple qubits is one of the central tasks for quantum information processings. Here, we propose an approach to entangle a number of cold ions (individually trapped in a string of microtraps) by a moved cavity. The cavity is pushed to include the ions one by one with an uniform velocity, and thus the information stored in former ions could be transferred to the latter ones by such a moving cavity bus. Since the positions of the trapped ions are precisely located, the strengths and durations of the ion-cavity interactions can be exactly controlled. As a consequence, by properly setting the relevant parameters typical multi-ion entangled states, e.g., WW state for 10 ions, could be deterministically generated. The feasibility of the proposal is also discussed.Comment: 8 pages, 2 figures, 1 tabl

    Valence Bond Entanglement and Fluctuations in Random Singlet Phases

    Full text link
    The ground state of the uniform antiferromagnetic spin-1/2 Heisenberg chain can be viewed as a strongly fluctuating liquid of valence bonds, while in disordered chains these bonds lock into random singlet states on long length scales. We show that this phenomenon can be studied numerically, even in the case of weak disorder, by calculating the mean value of the number of valence bonds leaving a block of LL contiguous spins (the valence-bond entanglement entropy) as well as the fluctuations in this number. These fluctuations show a clear crossover from a small LL regime, in which they behave similar to those of the uniform model, to a large LL regime in which they saturate in a way consistent with the formation of a random singlet state on long length scales. A scaling analysis of these fluctuations is used to study the dependence on disorder strength of the length scale characterizing the crossover between these two regimes. Results are obtained for a class of models which include, in addition to the spin-1/2 Heisenberg chain, the uniform and disordered critical 1D transverse-field Ising model and chains of interacting non-Abelian anyons.Comment: 8 pages, 6 figure

    Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations

    Full text link
    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parameterization problems, including those beyond continuum solvation calculations.The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters

    Chiral condensate and dressed Polyakov loop in the Nambu--Jona-Lasinio model

    Full text link
    We investigate the chiral condensate and the dressed Polyakov loop or dual chiral condensate at finite temperature and density in two-flavor Nambu--Jona-Lasinio model. The dressed Polyakov loop is regarded as an equivalent order parameter of deconfinement phase transition in a confining theory. We find the behavior of dressed Polyakov loop in absence of any confinement mechanism is quite interesting, with only quark degrees of freedom present, it still shows an order parameter like behavior. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,ÎŒ)(T,\mu) plane. In the case of explicit chiral symmetry breaking, it is found that the transition temperature for chiral restoration TcχT_c^{\chi} is smaller than that of the dressed Polyakov loop TcDT_c^{{\cal D}} in the low baryon density region where the transition is a crossover. With the increase of current quark mass the difference between the two transition temperatures is found to be increasing. However, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. We give an explanation on the feature of Tcχ=TcDT_c^{\chi}=T_c^{\cal D} in the case of 1st and 2nd order phase transitions, and Tcχ<TcDT_c^{\chi}<T_c^{\cal D} in the case of crossover, and expect this feature is general and can be extended to full QCD theory. Our result might indicate that in the case of crossover, there exists a small region where chiral symmetry is restored but the color degrees of freedom are still confined.Comment: 7 pages, 10 figure

    Control and single-shot readout of an ion embedded in a nanophotonic cavity

    Get PDF
    Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication. Building quantum networks requires scalable quantum light–matter interfaces based on atoms, ions or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide , have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light–matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f–4f optical and spin transitions suited to quantum storage and transduction, but only recently have single rare-earth ions been isolated and coupled to nanocavities. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Âč⁷ÂčYbÂłâș ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet

    Quantum phase transitions in a two-dimensional quantum XYX model: Ground-state fidelity and entanglement

    Full text link
    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin 1/2 anti-ferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground state wave functions.Comment: 4+ pages, 3 figure

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic
    • 

    corecore