2 research outputs found

    Nitric Oxide And Hypoxia Response In Pluripotent Stem Cells

    Get PDF
    The expansion of pluripotent cells (ESCs and iPSCs) under conditions that maintain their pluripotency is necessary to implement a cell therapy program. Previously, we have described that low nitric oxide (NO) donor diethylenetriamine/nitric oxide adduct (DETA-NO) added to the culture medium, promote the expansion of these cell types. The molecular mechanisms are not yet known. We present evidences that ESC and iPSCs in normoxia in presence of low NO triggers a similar response to hypoxia, thus maintaining the pluripotency. We have studied the stability of HIF-1α (Hypoxia Inducible Factor) in presence of low NO. Because of the close relationship between hypoxia, metabolism, mitochondrial function and pluripotency we have analyzed by q RT-PCR the expression of genes involved in the glucose metabolism such as: HK2, LDHA and PDK1; besides other HIF-1α target gene. We further analyzed the expression of genes involved in mitochondrial biogenesis such as PGC1α, TFAM and NRF1 and we have observed that low NO maintains the same pattern of expression that in hypoxia. The study of the mitochondrial membrane potential using Mito-Tracker dye showed that NO decrease the mitochondrial function. We will analyze other metabolic parameters, to determinate if low NO regulates mitochondrial function and mimics Hypoxia Response. The knowledge of the role of NO in the Hypoxia Response and the mechanism that helps to maintain self-renewal in pluripotent cells in normoxia, can help to the design of culture media where NO could be optimal for stem cell expansion in the performance of future cell therapies

    Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses

    No full text
    Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease. Umbilical cord-derived mesenchymal stromal cells (UC-MSC) exhibit anti-inflammatory, trophic, immunomodulatory and regenerative properties and have shown some beneficial yet controversial effects in clinical trials for T1DM. In order to clarify conflicting results, we herein dissected the cellular and molecular events derived from UC-MSC intraperitoneal administration (i.p.) in the RIP-B7.1 mouse model of experimental autoimmune diabetes. Intraperitoneal (i.p.) transplantation of heterologous mouse UC-MSC delayed the onset of diabetes in RIP-B7.1 mice. Importantly, UC-MSC i. p. transplantation led to a strong peritoneal recruitment of myeloid-derived suppressor cells (MDSC) followed by multiple T-, B- and myeloid cells immunosuppressive responses in peritoneal fluid cells, spleen, pancreatic lymph nodes and the pancreas, which displayed significantly reduced insulitis and pancreatic infiltration of T and B Cells and pro-inflammatory macrophages. Altogether, these results suggest that UC-MSC i. p. transplantation can block or delay the development of hyperglycemia through suppression of inflammation and the immune attack.This research was financed by the financial support from Institute of Health Carlos III (Co-funded by Fondos FEDER), for the projects to BS (PI14/01015 and PI-0272-2017, and Programme RETICS, call 2016 (RD16/0011/0034 discontinued in 3-5-19 by Fundación Progreso y Salud). Projects ICI21/00016 (IS Carlos III) and Agencia Valenciana de Innovacion Projects AVI-GVA COVID-19-68 and GVA-COVI19/2021/047 to BS PAIDI group CTS576, and by the European Regional Development Fund (FEDER) and the Consejería de Economía, Conocimiento, Empresas y Universidades de la Junta de Andalucía, within the framework of the operational program FEDER Andalucía 2014–2020. Specific Objective 1.2.3 “Promotion and generation of Frontier knowledge and knowledge oriented to the challenges of society, development of emerging technologies” led the reference research project (UPO-1381598) of JT.Peer reviewe
    corecore