68 research outputs found

    Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition

    Get PDF
    Hyperspectral image (HSI) is usually corrupted by various types of noise, including Gaussian noise, impulse noise, stripes, deadlines, and so on. Recently, sparse and low-rank matrix decomposition (SLRMD) has demonstrated to be an effective tool in HSI denoising. However, the matrix-based SLRMD technique cannot fully take the advantage of spatial and spectral information in a 3-D HSI data. In this paper, a novel group sparse and low-rank tensor decomposition (GSLRTD) method is proposed to remove different kinds of noise in HSI, while still well preserving spectral and spatial characteristics. Since a clean 3-D HSI data can be regarded as a 3-D tensor, the proposed GSLRTD method formulates a HSI recovery problem into a sparse and low-rank tensor decomposition framework. Specifically, the HSI is first divided into a set of overlapping 3-D tensor cubes, which are then clustered into groups by K-means algorithm. Then, each group contains similar tensor cubes, which can be constructed as a new tensor by unfolding these similar tensors into a set of matrices and stacking them. Finally, the SLRTD model is introduced to generate noisefree estimation for each group tensor. By aggregating all reconstructed group tensors, we can reconstruct a denoised HSI. Experiments on both simulated and real HSI data sets demonstrate the effectiveness of the proposed method.This paper was supported in part by the National Natural Science Foundation of China under Grant 61301255, Grant 61771192, and Grant 61471167, in part by the National Natural Science Fund of China for Distinguished Young Scholars under Grant 61325007, in part by the National Natural Science Fund of China for International Cooperation and Exchanges under Grant 61520106001, and in part by the Science and Technology Plan Project Fund of Hunan Province under Grant 2015WK3001 and Grant 2017RS3024.Peer Reviewe

    Quasiparticle characteristics of the weakly ferromagnetic Hund's metal MnSi

    Full text link
    Hund's metals are multi-orbital systems with 3d3d or 4d4d electrons exhibiting both itinerant character and local moments, and they feature Kondo-like screenings of local orbital and spin moments, with suppressed coherence temperature driven by Hund's coupling JHJ_H. They often exhibit magnetic order at low temperature, but how the interaction between the Kondo-like screening and long-range magnetic order is manifested in the quasiparticle spectrum remains an open question. Here we present spectroscopic signature of such interaction in a Hund's metal candidate MnSi exhibiting weak ferromagnetism. Our photoemission measurements reveal renormalized quasiparticle bands near the Fermi level with strong momentum dependence: the ferromagnetism manifests through possibly exchange-split bands (Q1) below TCT_C , while the spin/orbital screenings lead to gradual development of quasiparticles (Q2) upon cooling. Our results demonstrate how the characteristic spin/orbital coherence in a Hund's metal could coexist and compete with the magnetic order to form a weak itinerant ferromagnet, via quasiparticle bands that are well separated in momentum space and exhibit distinct temperature dependence. Our results imply that the competition between the spin/orbital screening and the magnetic order in a Hund's metal bears intriguing similarity to the Kondo lattice systems.Comment: accepted by PR

    Coherent control of a high-orbital hole in a semiconductor quantum dot

    Full text link
    Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process. The coherent nature of the Auger process is proved by Rabi oscillation and Ramsey interference. Harnessing this coherence further enables the investigation of single-hole relaxation mechanism. A hole relaxation time of 161 ps is observed and attributed to the phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and developing new types of orbital-based quantum photonic devices.Comment: Manuscript with 14 pages and 6 figures plus supplementary Information comprising 15 pages and 14 figure

    An Optimization-Based Approach to Social Network Group Decision Making with an Application to Earthquake Shelter-Site Selection

    No full text
    The social network has emerged as an essential component in group decision making (GDM) problems. Thus, this paper investigates the social network GDM (SNGDM) problem and assumes that decision makers offer their preferences utilizing additive preference relations (also called fuzzy preference relations). An optimization-based approach is devised to generate the weights of decision makers by combining two reliable resources: in-degree centrality indexes and consistency indexes. Based on the obtained weights of decision makers, the individual additive preference relations are aggregated into a collective additive preference relation. Further, the alternatives are ranked from best to worst according to the obtained collective additive preference relation. Moreover, earthquakes have occurred frequently around the world in recent years, causing great loss of life and property. Earthquake shelters offer safety, security, climate protection, and resistance to disease and ill health and are thus vital for disaster-affected people. Selection of a suitable site for locating shelters from potential alternatives is of critical importance, which can be seen as a GDM problem. When selecting a suitable earthquake shelter-site, the social trust relationships among disaster management experts should not be ignored. To this end, the proposed SNGDM model is applied to evaluate and select earthquake shelter-sites to show its effectiveness. In summary, this paper constructs a novel GDM framework by taking the social trust relationship into account, which can provide a scientific basis for public emergency management in the major disasters field

    Climate-dependence of ecosystem services in a nature reserve in northern China.

    No full text
    Evaluation of ecosystem services has become a hotspot in terms of research focus, but uncertainties over appropriate methods remain. Evaluation can be based on the unit price of services (services value method) or the unit price of the area (area value method). The former takes meteorological factors into account, while the latter does not. This study uses Kunyu Mountain Nature Reserve as a study site at which to test the effects of climate on the ecosystem services. Measured data and remote sensing imagery processed in a geographic information system were combined to evaluate gas regulation and soil conservation, and the influence of meteorological factors on ecosystem services. Results were used to analyze the appropriateness of the area value method. Our results show that the value of ecosystem services is significantly affected by meteorological factors, especially precipitation. Use of the area value method (which ignores the impacts of meteorological factors) could considerably impede the accuracy of ecosystem services evaluation. Results were also compared with the valuation obtained using the modified equivalent value factor (MEVF) method, which is a modified area value method that considers changes in meteorological conditions. We found that MEVF still underestimates the value of ecosystem services, although it can reflect to some extent the annual variation in meteorological factors. Our findings contribute to increasing the accuracy of evaluation of ecosystem services

    Enhanced Gamma Activity and Cross-Frequency Interaction of Resting-State Electroencephalographic Oscillations in Patients with Alzheimer’s Disease

    No full text
    Cognitive impairment, functional decline and behavioral symptoms that characterize Alzheimer’s disease (AD) are associated with perturbations of the neuronal network. The typical electroencephalographic (EEG) features in AD patients are increased delta or theta rhythm and decreased alpha or beta rhythm activities. However, considering the role of cross-frequency couplings in cognition, the alternation of cross-frequency couplings in AD patients is still obscure. This study aims to explore the interaction dynamics between different EEG oscillations in AD patients. We recorded the resting eye-closed EEG signals in 8 AD patients and 12 healthy volunteers. By analyzing the wavelet power spectrum and bicoherence of EEG, we found enhanced gamma rhythm power in AD patients in addition to the increased delta and decreased alpha power. Furthermore, an enhancement of the cross-frequency coupling strength between the beta/gamma and low-frequency bands was observed in AD patients compared to healthy controls (HCs). We propose that the pathological increase of ongoing gamma-band power might result from the disruption of the GABAergic interneuron network in AD patients. Furthermore, the cross-frequency overcouplings, which reflect the enhanced synchronization, might indicate the attenuated complexity of the neuronal network, and AD patients have to use more neural resources to maintain the resting brain state. Overall, our findings provide new evidence of the disturbance of the brain oscillation network in AD and further deepen our understanding of the central mechanisms of AD

    Enhanced Gamma Activity and Cross-Frequency Interaction of Resting-State Electroencephalographic Oscillations in Patients with Alzheimer’s Disease

    No full text
    Cognitive impairment, functional decline and behavioral symptoms that characterize Alzheimer's disease (AD) are associated with perturbations of the neuronal network. The typical electroencephalographic (EEG) features in AD patients are increased delta or theta rhythm and decreased alpha or beta rhythm activities. However, considering the role of cross-frequency couplings in cognition, the alternation of cross-frequency couplings in AD patients is still obscure. This study aims to explore the interaction dynamics between different EEG oscillations in AD patients. We recorded the resting eye-closed EEG signals in 8 AD patients and 12 healthy volunteers. By analyzing the wavelet power spectrum and bicoherence of EEG, we found enhanced gamma rhythm power in AD patients in addition to the increased delta and decreased alpha power. Furthermore, an enhancement of the cross-frequency coupling strength between the beta/gamma and low-frequency bands was observed in AD patients compared to healthy controls (HCs). We propose that the pathological increase of ongoing gamma-band power might result from the disruption of the GABAergic interneuron network in AD patients. Furthermore, the cross-frequency overcouplings, which reflect the enhanced synchronization, might indicate the attenuated complexity of the neuronal network, and AD patients have to use more neural resources to maintain the resting brain state. Overall, our findings provide new evidence of the disturbance of the brain oscillation network in AD and further deepen our understanding of the central mechanisms of AD.National Science Foundation of China [81401123]; Ministry of Science and Technology of China [2015BAI13B01]SCI(E)ARTICLE

    N-terminus three residues deletion mutant of human beta-defensin 3 with remarkably enhanced salt-resistance.

    No full text
    In this study, we designed and synthesized three N-terminal deletion analogs of human beta-defensin 3 (hBD-3), namely, hBD-3Δ4, hBD-3Δ7, and hBD-3Δ10, to determine the effect of N-terminal residues on the antibacterial activity and salt resistance of these peptides. The antibacterial activities and salt resistance of hBD-3 and its analogs were tested against a broad range of standard and clinically isolated strains. The deletion of nine N-terminal residues significantly reduced the antibacterial activity of hBD-3 against most of tested strains, particularly Klebsiella pneumonia. Compared with hBD-3 and other analogs, the analog with a deletion of three residues, hBD-3Δ4, exhibited significantly higher antimicrobial activity against almost all the tested strains, especially Escherichia coli and Enterococcus faecium, at high NaCl concentrations. Given its broad spectrum of antimicrobial activity and high salt resistance, hBD-3Δ4 could serve as a promising template for new therapeutic antimicrobial agents
    corecore