30 research outputs found
Activation of Proneuronal Transcription Factor Ascl1 in Maternal Liver Ensures a Healthy Pregnancy
Background & aims: Maternal liver shows robust adaptations to pregnancy to accommodate the metabolic needs of the developing and growing placenta and fetus by largely unknown mechanisms. We found that Ascl1, a gene encoding a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice.
Methods: To investigate whether and how Ascl1 plays a pregnancy-dependent role, we deleted the Ascl1 gene specifically in maternal hepatocytes from midgestation until term.
Results: As a result, we identified multiple Ascl1-dependent phenotypes. Maternal livers lacking Ascl1 showed aberrant hepatocyte structure, increased hepatocyte proliferation, enlarged hepatocyte size, reduced albumin production, and increased release of liver enzymes, indicating maternal liver dysfunction. Simultaneously, maternal pancreas and spleen and the placenta showed marked overgrowth; and the maternal ceca microbiome showed alterations in relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1-deficient dams experienced abnormal postnatal growth after weaning, implying an adverse pregnancy outcome. Mechanistically, we found that maternal hepatocytes deficient for Ascl1 showed robust activation of insulin-like growth factor 2 expression, which may contribute to the Ascl1-dependent phenotypes widespread in maternal and uteroplacental compartments.
Conclusions: In summary, we show that maternal liver, via activating Ascl1 expression, modulates the adaptations of maternal organs and the growth of the placenta to maintain a healthy pregnancy. Our studies show that Ascl1 is a novel and critical regulator of the physiology of pregnancy
Recommended from our members
Doping High-Mobility Donor : Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials
Organic semiconductors (OSCs) are attractive for fabrication of thermoelectric devices with low cost, large area, low toxicity, and high flexibility. In order to achieve high-performance organic thermoelectric devices (OTEs), it is essential to develop OSCs with high conductivity (Ļ), large Seebeck coefficient (S), and low thermal conductivity (Īŗ). It is equally important to explore efficient dopants matching the need of thermoelectric devices. The thermoelectric performance of a high-mobility donorāacceptor (DāA) polymer semiconductor, which is doped by an organic salt, is studied. Both a high p-type electrical conductivity approaching 4 S cmā1 and an excellent power factor (PF) of 7 ĀµW Kā2 mā1 are obtained, which are among the highest reported values for polymer semiconductors. Temperature-dependent conductivity, Seebeck coefficient and power factor of the doped materials are systematically investigated. Detailed analysis on the results of thermoelectric measurements has revealed a hopping transport in the materials, which verifies the empirical relationship: S ā Ļā1/4 and PF ā Ļ1/2. The results demonstrate that DāA copolymer semiconductors with proper combination of dopants have great potential for fabricating high-performance thermoelectric devices. Ā© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Pregnancy facilitates maternal liver regeneration after partial hepatectomy
Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFĪ±, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth
Activation of Proneuronal Transcription Factor Ascl1 in Maternal Liver Ensures a Healthy Pregnancy
Background & aims: Maternal liver shows robust adaptations to pregnancy to accommodate the metabolic needs of the developing and growing placenta and fetus by largely unknown mechanisms. We found that Ascl1, a gene encoding a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice.
Methods: To investigate whether and how Ascl1 plays a pregnancy-dependent role, we deleted the Ascl1 gene specifically in maternal hepatocytes from midgestation until term.
Results: As a result, we identified multiple Ascl1-dependent phenotypes. Maternal livers lacking Ascl1 showed aberrant hepatocyte structure, increased hepatocyte proliferation, enlarged hepatocyte size, reduced albumin production, and increased release of liver enzymes, indicating maternal liver dysfunction. Simultaneously, maternal pancreas and spleen and the placenta showed marked overgrowth; and the maternal ceca microbiome showed alterations in relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1-deficient dams experienced abnormal postnatal growth after weaning, implying an adverse pregnancy outcome. Mechanistically, we found that maternal hepatocytes deficient for Ascl1 showed robust activation of insulin-like growth factor 2 expression, which may contribute to the Ascl1-dependent phenotypes widespread in maternal and uteroplacental compartments.
Conclusions: In summary, we show that maternal liver, via activating Ascl1 expression, modulates the adaptations of maternal organs and the growth of the placenta to maintain a healthy pregnancy. Our studies show that Ascl1 is a novel and critical regulator of the physiology of pregnancy
Circadian clock core component Bmal1 dictates cell cycle rhythm of proliferating hepatocytes during liver regeneration
After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.
NEW & NOTEWORTHY:
We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules
Nomogram for prediction of portal vein system thrombosis after splenectomy for hypersplenism in patients with Wilson disease
Background: The occurrence of portal vein system thrombosis (PVST) after splenectomy in patients with Wilson disease (WD) can lead to serious complications. The early identification of high-risk patients can help improve patient prognosis. This study aimed to establish and validate a personalized nomogram for assessing the risk of PVST after splenectomy in patients with WD and hypersplenism.
Methods: We retrospectively collected the data from 81 patients with WD and hypersplenism who underwent splenectomy. Based on whether PVST occurred within a month after the operation, they were divided into the PVST group and the non-PVST group. The clinical data of the 2 groups were compared, and univariate analysis was used to select the statistically significant features and incorporated into the least absolute shrinkage and selection operator (LASSO) regression model for optimization. Multivariate logistic regression analysis was used to determine the independent risk factors for PVST after splenectomy, which were then applied to establish a personalized nomogram. We calculated the concordance (C)-index and drew the receiver operating characteristic (ROC) curve, the model calibration curve, and the clinical decision analysis (DCA) curve to evaluate the accuracy, calibration, and clinical applicability of the model, respectively. We used bootstrapping for internal validation of the model.
Results: Univariate analysis showed that the differences in preoperative portal vein diameter and velocity of portal blood flow, postoperative mean platelet volume (MPV), mean platelet distribution width (PDW), D-dimer, prothrombin time (PT), and the increase of platelet count (PLT) were of statistical significance (P<0.05). According to the results of the LASSO and multivariate logistic regression analyses, a model including preoperative portal vein diameter, preoperative portal blood flow velocity, postoperative D-dimer, and the increase of PLT was established to predict the risk of PVST after splenectomy. The model showed good accuracy with a C-index of 0.838 (95% CI: 0.750ā0.926) and had a well-fitted calibration curve. Furthermore, internal validation showed it achieved a moderate C-index of 0.805. The DCA curve indicated that the model has clinical applicability when patients are treated at thresholds of 2ā100%.
Conclusions: Establishing a predictive model for the risk of PVST in patients with WD and hypersplenism after splenectomy can help clinicians identify patients at high risk of PVST who require intervention measures
Pregnancy facilitates maternal liver regeneration after partial hepatectomy
Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFĪ±, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth
1H NMR-based metabolomics investigation of copper-laden rat: a model of Wilson's disease
Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established
1H NMR-based metabolomics investigation of copper-laden rat: a model of Wilson's disease.
Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.A combination of 1HNMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the urine and blood serum samples collected from the copper-laden rat model of WD with PA treatment.Copper accumulation in the copper-laden rats is associated with increased lactate, creatinine, valine and leucine, as well as decreased levels of glucose and taurine in the blood serum. There were also significant changes in p-hydroxyphenylacetate (p-HPA), creatinine, alpha-ketoglutarate (Ī±-KG), dimethylamine, N-acetylglutamate (NAG), N-acetylglycoprotein (NAC) in the urine of these rats. Notably, the changes in p-HPA, glucose, lactate, taurine, valine, leucine, and NAG were found reversed following PA treatment. Nevertheless, there were no changes for dimethylamine, Ī±-KG, and NAC as a result of the treatment. Compared with the controls, the concentrations of hippurate, formate, alanine, and lactate were changed when PA was applied and this is probably due to its side effect. A tool named SMPDB (Small Molecule Pathway Database) is introduced to identify the metabolic pathway influenced by the copper-laden diet.The study has shown the potential application of NMR-based metabolomic analysis in providing further insights into the molecular mechanism underlying disorder due to WD
Nrf2 deficiency causes hepatocyte dedifferentiation and reduced albumin production in an experimental extrahepatic cholestasis model
The transcription factor Nrf2 modulates the initiation and progression of a number of diseases including liver disorders. We evaluated whether Nrf2 mediates hepatic adaptive responses to cholestasis. Wild-type and Nrf2-null mice were subjected to bile duct ligation (BDL) or a sham operation. As cholestasis progressed to day 15 post-BDL, hepatocytes in the wild-type mice exhibited a tendency to dedifferentiate, indicated by the very weak expression of hepatic progenitor markers: CD133 and tumor necrosis factor-like weak induced apoptosis receptor (Fn14). During the same period, Nrf2 deficiency augmented this tendency, manifested by higher CD133 expression, earlier, stronger, and continuous induction of Fn14 expression, and markedly reduced albumin production. Remarkably, as cholestasis advanced to the late stage (40 days after BDL), hepatocytes in the wild-type mice exhibited a Fn14+ phenotype and strikingly upregulated the expression of deleted in malignant brain tumor 1 (DMBT1), a protein essential for epithelial differentiation during development. In contrast, at this stage, hepatocytes in the Nrf2-null mice entirely inhibited the upregulation of DMBT1 expression, displayed a strong CD133+/Fn14+ phenotype indicative of severe dedifferentiation, and persistently reduced albumin production. We revealed that Nrf2 maintains hepatocytes in the differentiated state potentially via the increased activity of the Nrf2/DMBT1 pathway during cholestasis