237 research outputs found

    Incremental verification of co-observability in discrete-event systems

    Get PDF
    Existing strategies for verifying co-observability, one of the properties that must be satisfied for synthesizing solutions to decentralized supervisory control problems, require the construction of the complete system model. When the system is composed of many subsystems, these monolithic approaches may be impractical due to the state-space explosion problem. To address this issue, we introduce an incremental verification of co-observability approach. Selected subgroups of the system are evaluated individually, until verification of co-observability is complete. The new method is potentially much more efficient than the monolithic approaches, in particular for systems composed of many subsystems, allowing for some intractable state-space explosion problems to be manageable. Properties of this new strategy are presented, along with a corresponding algorithm and an example

    BAG : Managing GPU as buffer cache in operating systems

    Get PDF
    This paper presents the design, implementation and evaluation of BAG, a system that manages GPU as the buffer cache in operating systems. Unlike previous uses of GPUs, which have focused on the computational capabilities of GPUs, BAG is designed to explore a new dimension in managing GPUs in heterogeneous systems where the GPU memory is an exploitable but always ignored resource. With the carefully designed data structures and algorithms, such as concurrent hashtable, log-structured data store for the management of GPU memory, and highly-parallel GPU kernels for garbage collection, BAG achieves good performance under various workloads. In addition, leveraging the existing abstraction of the operating system not only makes the implementation of BAG non-intrusive, but also facilitates the system deployment

    Radiative lifetimes of GdI and GdII

    Get PDF
    Natural radiative lifetimes of 25 even-parity levels in Gd i (4f(7) 5d(2) 6p, 4f(7)5d6s6p and 4f(8)5d6s configurations) and 13 even-parity levels in Gd it (4f(7)5d6p and 4f(7)6s6p configurations) have been measured using the time-resolved laser-induced fluorescence technique in a laser-induced gadolinium plasma. The Gd I and Gd it levels range in energy from 26 866 to 36 395 cm(-1), and 25 960 to 42 746 cm(-1), respectively. In the measurements, stimulated Brillouin scattering techniques were employed to produce I ns laser pulses to enable accurate measurements of short-lived states. The uncertainty of the radiative lifetimes is, with a few exceptions. about +/-5%

    Lifetime measurements in neutral and singly ionized vanadium

    Get PDF
    Radiative lifetimes of ten odd-parity levels of V I belonging to the 3d(3)4s4p and 3d(4)4p configurations and of 11 odd-parity levels of V II belonging to the 3d(3)4p configuration are reported. The lifetimes were measured with use of single-step excitation and time-resolved fluorescence spectroscopy. The neutral and singly ionized vanadium atoms were produced in a laser-induced vanadium plasma. (c) 2006 Optical Society of America

    Olympus receiver evaluation and phase noise measurements

    Get PDF
    A set of measurements performed by the Michigan Tech Sensing and Signal Processing Group on the analog receiver built by the Virginia Polytechnic Institute (VPI) and the Jet Propulsion Laboratory (JPL) for propagation measurements using the Olympus Satellite is described. Measurements of local oscillator (LO) phase noise were performed for all of the LOs supplied by JPL. In order to obtain the most useful set of measurements, LO phase noise measurements were made using the complete VPI receiver front end. This set of measurements demonstrates the performance of the receiver from the Radio Frequency (RF) input through the high Intermediate Frequency (IF) output. Three different measurements were made: LO phase noise with DC on the voltage controlled crystal oscillator (VCXO) port; LO phase noise with the 11.381 GHz LO locked to the reference signal generator; and a reference measurement with the JPL LOs out of the system

    BAG: Managing GPU as Buffer Cache in Operating Systems

    Get PDF
    This paper presents the design, implementation and evaluation of BAG, a system that manages GPU as the buffer cache in operating systems. Unlike previous uses of GPUs, which have focused on the computational capabilities of GPUs, BAG is designed to explore a new dimension in managing GPUs in heterogeneous systems where the GPU memory is an exploitable but always ignored resource. With the carefully designed data structures and algorithms, such as concurrent hashtable, log-structured data store for the management of GPU memory, and highly-parallel GPU kernels for garbage collection, BAG achieves good performance under various workloads. In addition, leveraging the existing abstraction of the operating system not only makes the implementation of BAG non-intrusive, but also facilitates the system deployment

    Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    Full text link
    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.Comment: 4 pages, 4 figure

    Lifetimes along perturbed Rydberg series in neutral thallium

    Get PDF
    Radiative lifetimes of 15 Tl I levels belonging to the 6s(2)ns(2)S(1/2) (n = 7-14) and 6s(2)nd(2)D(3/2) Rydberg series (n = 6-12) have been measured using a time-resolved laser-induced fluorescence technique. All the measured levels have been excited from the ground state 6s(2)6p(2)P(1/2)(0) (odd parity) with a single-step excitation process. The general perturbation of the ns series by the 6s6p(2) configuration and the corresponding modification of the lifetimes are adequately reproduced by a theoretical model including core-polarization effects and combined with a least-squares fit to the observed energy levels. The general behaviour of the lifetime values for the 6s(2)np odd levels along the Rydberg series is also well reproduced. The use of the multiconfiguration quantum defect theory has allowed us to obtain lifetime values along the 6s(2)ns(2)S(1/2) series up to levels with n = 31

    High-brightness switchable multi-wavelength remote laser in air

    Full text link
    Remote laser in air based on amplified spontaneous emission (ASE) has produced rather well-collimated coherent beams in both backward and forward propagation directions, opening up possibilities for new remote sensing approaches. The remote ASE-based lasers were shown to enable operation either at ~391 and 337 nm using molecular nitrogen or at ~845 nm using molecular oxygen as gain medium, depending on the employed pump lasers. To date, a multi-wavelength laser in air that allows for dynamically switching the operating wavelength has not yet been achieved, although this type of laser is certainly of high importance for detecting multiple hazard gases. In this Letter, we demonstrate, for the first time to our knowledge, a harmonic-seeded switchable multi-wavelength laser in air driven by intense mid-infrared femtosecond laser pulses. Furthermore, population inversion in the multi-wavelength remote laser occurs at an ultrafast time-scale (i.e., less than ~200 fs) owing to direct formation of excited molecular nitrogen ions by strong-field ionization of inner-valence electrons, which is fundamentally different from the previously reported pumping mechanisms based either on electron recombination of ionized molecular nitrogen or on resonant two-photon excitation of atomic oxygen fragments resulting from resonant two-photon dissociation of molecular oxygen. The bright multi-wavelength laser in air opens the perspective for remote detection of multiple pollutants based on nonlinear spectroscopy.Comment: 18 pages, 5 figure

    Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses

    Full text link
    We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an "instantaneous" population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.Comment: 19 pages, 4 figure
    corecore